Tiling with unique vertex corona joint work with Dirk Frettlöh from Bielefeld University

Alexey Garber

Moscow State University and Delone Laboratory of Yaroslavl State University, Russia

Fifth Discrete Geometry and Algebraic Combinatorics
Conference
April 18, 2013

Tilings

Definition

A collection $\mathcal T$ of (convex) polytopes in $\mathbb R^d$ is called *(locally finite)* tiling if

- union of all polytopes from \mathcal{T} is \mathbb{R}^d ;
- they do not intersect in internal points;
- lacksquare every ball intersects only finite number of polytopes from $\mathcal{T}.$

Tilings

Definition

A collection $\mathcal T$ of (convex) polytopes in $\mathbb R^d$ is called *(locally finite)* tiling if

- union of all polytopes from \mathcal{T} is \mathbb{R}^d ;
- they do not intersect in internal points;
- lacksquare every ball intersects only finite number of polytopes from $\mathcal{T}.$

Definition

A tiling is called *face-to-face* or *normal* if intersection of any two tiles is face of both.

Definition

A tiling of \mathbb{R}^d is called *periodic* if it has *d*-dimensional translation group.

Definition

A tiling of \mathbb{R}^d is called *periodic* if it has *d*-dimensional translation group.

Definition

A tiling of \mathbb{R}^d is called *aperiodic* if it has no translation group.

Definition

A tiling of \mathbb{R}^d is called *aperiodic* if it has no translation group.

Crystallographic tilings

Definition

A tiling \mathcal{T} is called *crystallographic* if fundamental domain of its symmetry group has compact fundamental domain.

Crystallographic tilings

Definition

A tiling \mathcal{T} is called *crystallographic* if fundamental domain of its symmetry group has compact fundamental domain.

In Euclidean space crystallographic tiling is the same as periodic tiling.

Crystallographic tilings

Definition

A tiling \mathcal{T} is called *crystallographic* if fundamental domain of its symmetry group has compact fundamental domain.

In Euclidean space crystallographic tiling is the same as periodic tiling.

But this definition can be used in Hyperbolic space \mathbb{H}^d too.

Coronas of a tile

Consider an arbitrary tile P of a tiling \mathcal{T}

Coronas of a tile

Consider an arbitrary tile P of a tiling $\mathcal T$

Definition

The k-th corona of P is the collection of all tiles of T that can be reached from P be at most k steps across facets of the tiling.

Local Theorem

Theorem (Generalized Local Theorem by N. Dolbilin and M. Shtogrin)

A tiling of \mathbb{R}^d (or \mathbb{H}^d) is crystallographic iff for some k the following conditions hold.

- For the number N(k) of k-coronas we have: N(k) = N(k+1)and this number is finite
- For every i the symmetry groups $S_i(k)$ and $S_i(k+1)$ of k- and (k+1)-coronas of the i-th type coincides.

Vertex corona

Consider an arbitrary vertex A of the tiling \mathcal{T} .

Definition

The set of all polytopes contains A is called the vertex corona of A

Vertex corona

Consider an arbitrary vertex A of the tiling \mathcal{T} .

Definition

The set of all polytopes contains A is called the vertex corona of A

Definition

A tiling \mathcal{T} is said to be a *unique vertex corona tiling* if all its vertex coronas are congruent. This means not only collections of polytopes are the same but also that they arranged at correspondent vertices in the same way.

Unique vertex corona and periodicity

Question

Is it true that unique vertex corona of a tiling T implies that T is periodic (crystallographic)?

Unique vertex corona and periodicity

Unique vertex corona and periodicity

Lemma

Periodic and aperiodic tilings

If every vertex corona contains n polygons and k_i of them are i-gons then

$$\sum \frac{k_i}{i} = \frac{n-2}{2}.$$

Lemma

Periodic and aperiodic tilings

If every vertex corona contains n polygons and k_i of them are i-gons then

$$\sum \frac{k_i}{i} = \frac{n-2}{2}.$$

From this equality we can derive only finitely many local structures of coronas.

Idea of face-to-face classification: topological structure

Lemma

If every vertex corona contains n polygons and k_i of them are i-gons then

$$\sum \frac{k_i}{i} = \frac{n-2}{2}.$$

From this equality we can derive only finitely many local structures of coronas.

And only finitely many global topological structures of the whole tiling.

For example, there is a solution $k_3 = 1, k_4 = 2, k_6 = 1$.

For example, there is a solution $k_3 = 1, k_4 = 2, k_6 = 1$.

Two theoretical local structures are

For example, there is a solution $k_3 = 1, k_4 = 2, k_6 = 1$.

And the only possible topological structure is the following:

■ We mark segments that are equal with the same color.

■ We mark segments that are equal with the same color.

Idea of face-to-face classification: segments and angles

■ We mark segments that are equal with the same color.

In this particular case there are two possibilities.

Some examples of single corona tilings

Figure : Tiling with regular triangle, hexagon and trapezoid.

Some examples of single corona tilings

Figure: Tiling with two different rectangles and trapezoid.

Some examples of single corona tilings

Figure: Tiling with three hexagons.

Example of non-periodic tiling

Figure: Tiling with one-dimensional translation group.

Idea of non face-to-face classification

Lemma

Assume every vertex corona of A contains n polygons one of which contains vertex on its side. And k; of them that has A as a vertex are i-gons. Then

$$\sum \frac{k_i}{i} = \frac{n-2}{2}.$$

Properties of two-dimensional tilings

Claim

If a two-dimensional tiling $\mathcal T$ has a unique vertex corona then it could be non-periodic.

Properties of two-dimensional tilings

Claim

If a two-dimensional tiling ${\cal T}$ has a unique vertex corona then it could be non-periodic.

Claim

But T always has at least one-dimensional translation group G_T .

Properties of two-dimensional tilings

Claim

If a two-dimensional tiling $\mathcal T$ has a unique vertex corona then it could be non-periodic.

Claim

But T always has at least one-dimensional translation group G_T .

Claim

If $G_{\mathcal{T}}$ is one-dimensional then we will need to use corona $C_{\mathcal{T}}$ and its reflected image (rotations are not enough).

Question

Periodic and aperiodic tilings

What is the minimal dimension of translation group G_T a tiling with unique vertex corona can have?

Question

Periodic and aperiodic tilings

What is the minimal dimension of translation group $G_{\mathcal{T}}$ a tiling with unique vertex corona can have?

Question

Can a tiling with unique "non-reflected" vertex corona be non-periodic?

Theorem (D. Frettlöh, A.G.)

There are d-dimensional face-to-face tilings with unique vertex corona with translation group of dimension at most $\frac{d}{2}$.

Estimates for face-to-face tilings

Theorem (D. Frettlöh, A.G.)

There are d-dimensional face-to-face tilings with unique vertex corona with translation group of dimension at most $\frac{d}{2}$.

But for now we need to use both reflections of corona.

Hyperbolic space

Böröczky tiling

Dual tiling is non-crystallographic

