

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ М.В. ЛОМОНОСОВА

МЕХАНИКО-МАТЕМАТИЧЕСКИЙ ФАКУЛЬТЕТ

кафедра высшей геометрии и топологии

Прямоугольные группы Кокстера, реализуемые отражениями в пространстве Лобачевского

Курсовая работа студентки 4-го курса Чепаковой Д.В.

Научный руководитель: доктор физ.-мат. наук, профессор Панов Т. Е.

Содержание

Bı	ведение	3
1.	Пространство $E^{n,1}$	3
2.	Пространства \mathbb{L}^2 и \mathbb{L}^3	6
	2.1. Двумерный случай	6
	2.2. Трехмерный случай	7
3.	Выводы	9
$\Pi_{]}$	риложение	10
Cı	писок литературы	12

Введение

Из [1] известно, что любую дискретную группу отражений, действующую в пространстве постоянной кривизны X, можно восстановить по ее фундаментальному многограннику $P = \bigcap_{i=1}^m H_i$ следующим образом:

$$G(P)=\langle g_1,...,g_m|(g_ig_j)^{n_{ij}}=e$$
, если $\angle(H_i,H_j)=\frac{\pi}{n_{ij}}\rangle$, где $n_{ij}\in\mathbb{N}.$

Многогранники, соответствующие дискретным группам отражений называются *многогранниками Кокстера*. Нас будет интересовать, в каких случаях абстрактная прямоугольная группа Кокстера, то есть любая группа G вида

$$G = \langle g_1, \dots, g_m | (g_i g_j)^2 = e \rangle$$
, для некоторых пар (i,j)

реализуема как дискретная группа отражений в X. В качестве X будем рассматривать пространство Лобачевского(евклидов и сферический случаи исследованы и полностью классифицированы). Заметим, что каждой абстрактной прямоугольной группе Кокстера RC_{Γ} однозначно соответствует граф Γ без петель и кратных ребер, устроенный следующим образом:

$$V(\Gamma) = \{1, \dots, m\}$$

 $E(\Gamma) = \{(i, j) : (g_i g_j)^2 = e\}$

Теперь сформулируем главный вопрос, которому будет посвящена эта работа: как по абстрактной прямоугольной группе Кокстера понять, может она быть реализована как дискретная группа отражений в пространстве Лобачевского или нет?

1. Пространство $E^{n,1}$

Для начала опишем модель пространства Лобачевского \mathbb{L}^n , которой будем пользоваться. Пусть $E^{n,1}$ —(n+1)-мерное вещественное векторное пространство, снабженное следующим скалярным произведением

$$(x,y) = -x_0 y_0 + x_1 y_1 + \dots + x_n y_n$$

и пусть V — множество вида

$$V = \left\{ x \in E^{n,1} : (x,x) < 0 \right\},\,$$

а V_+ — одна из его компонент связности. Точки пространства Лобачевского отождествляются с прямыми, проходящими через начало координат и лежащими в V_+ .

Подпространство пространства $E^{n,1}$, называется *гиперболическим* (соответственно *эллиптическим*, *па-раболическим*), если индуцированное на нем скалярное произведение невырожденно и неопределенно (соответственно положительно, вырожденно). Ортогональное дополнение к гиперболическому (соответственно эллиптическому, параболическому) подпространству есть эллиптическое (соответственно гиперболическое, параболическое) подпространство дополнительной размерности.

Каждой *s*-мерной плоскости в \mathbb{L}^n соответствует гиперболическая (s+1)—мерная плоскость в $E^{n,1}$. Следовательно каждому многограннику $P = \bigcap_{i=1}^m H_i^-$ будет соответствовать многогранный угол \widehat{P} :

$$\hat{P} = \bigcap_{i=1}^{m} \widehat{H}_{i}^{-}$$

где \hat{H}_i —гиперболическая гиперплоскость в $E^{n,1}$, соответствующая H_i . Заметим, что нормали к гиперболическим гиперплоскостям \hat{H}_i имеют положительную длину, так как лежат в эллиптическом пространстве, ортогональном к гиперболическому пространству \hat{H}_i . Пусть e_1,\ldots,e_m — единичные нормали к $\hat{H}_1,\ldots,\hat{H}_m$ соответственно.

Многогранный угол \widehat{P} задается следующим образом

$$\widehat{P} = \{x : (e_i, x) \le 0, i = 1, \dots, m\}$$

При этом гиперболический многогранник P будет компактен, если $\hat{P} \subset V_+$ и будет иметь конечный объем, если $\hat{P} \subset \overline{V_+}$ (см. Рис. 1).

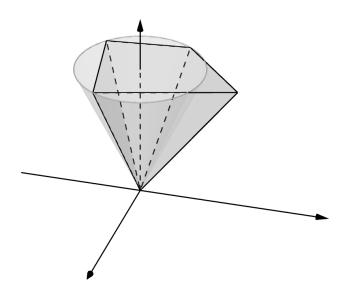


Рис. 1. Многогранник неконечного объема с тремя идеальными вершинами

Обозначим как $G(P) = (g_{ij})$ матрицу Грамма системы единичных нормалей e_1, \ldots, e_m . Эта матрица имеет следующий вид:

$$g_{ij} = \begin{cases} 1 & \text{, если } i = j; \\ -\cos\frac{\pi}{n_{ij}} & \text{, если } H_i \text{ и } H_j \text{ пересекаются, и } \angle(H_i, H_j) = \frac{\pi}{n_{ij}}; \\ -\cosh\rho(H_i, H_j) & \text{, если } H_i \text{ и } H_j \text{ не пересекаются} \end{cases}$$

где ρ —расстояние в пространстве Лобачевского.

Невырожденный выпуклый многогранник $P \subset \mathbb{L}^n$ назовем *разложимым*, если у него найдётся собственная грань положительной размерности, ортогональная всем не содержащим ее гиперграням. Всякий выпуклый многогранник конечного объема — неразложим [2]. Разложимость многогранника P эквивалентна разложимости системы векторов $\{e_i\}_{i=1}^m$ на две непустые ортогональные части, что в свою очередь эквивалентно неразложимости матрицы G(P).

Заметим, что многогранник P имеет максимальную размерность, тогда и только тогда, когда $rank\,G(P)\,=\,n\,+\,1.$ В этом случае система векторов $\{e_i\}$ определена с точностью до ортогонального преобразования пространства $E^{n,1}.$

Для получения ответа на сформулированный выше вопрос, приведем с кратким доказательством результат Э.Б.Винберга. Для этого воспользуемся следующими двумя предложениями.

Предложение 1.1. Пусть e_1, \ldots, e_m — неразложимая система векторов в $E^{n,1}$ ранга n+1, причем $(e_i, e_j) < 0$ при $i \neq j$. Пусть, к тому же, сигнатура матрицы G(P) = (n, 1). Тогда угол \hat{P} , определенный выше, содержит непустое открытое подмножество одной из связных компонент множества V и не содержит ненулевых векторов из замыкания другой компоненты.

Доказательство. G(P)— неразложимая симметричная матрица с неположительными элементами вне диагонали. Обозначим через $\lambda(G)$ минимальное собственное значение матрицы G(P) и через $\delta(G)$ — максимальный из ее диагональных элементов. Тогда $\lambda(G) < 0$, что следует из сигнатуры матрицы. Из теоремы Перрона-Фробениуса, примененной к матрице

$$B = \delta(G)E - A$$

получаем, что:

- 1) $\lambda(G)$ является простым собственным значением матрицы G(P);
- 2) для соответствующего собственного вектора $\bar{c}=(c_1,\ldots,c_m)$ имеем $c_i>0,\ i=1,\ldots,m$.

Рассмотрим вектор $v = \sum_{i} c_i e_i$, тогда

$$(v, e_j) = \sum_{i} g_{ij}c_i = \lambda c_j < 0, j = 1, \dots, m$$

Это означает, что v является внутренней точкой конуса \hat{P} . В то же время

$$(v,v) = \sum_{i} c_i(v,e_i) < 0$$

так что $v \in V$. Пусть $v \in V_+$. Тогда для всех ненулевых векторов x из $\overline{V_-}$ выполняется

Но для всех векторов из \widehat{P} выполнено

$$(v,x) = \sum_{i} c_i(e_i,x) \le 0$$

следовательно, многогранный угол \widehat{P} пересекается только с одной из связных компонент V.

Теперь сформулируем результат Э.Б.Винберга и приведем его краткое доказательство.

Теорема 1.2. Пусть $G = (g_{ij})$ — неразложимая симметричная матрица сигнатуры (n,1) с единицами на диагонали и неположительными элементами вне диагонали. Тогда в n-мерном пространстве Лобачевского \mathbb{L}^n существует такой выпуклый многогранник конечного объема, что его матрица Грама G(P) совпадает с G. Многогранник определен однозначно с точностью до движения пространства \mathbb{L}^n .

Доказательство. Так как группа движений пространства \mathbb{L}^n является подгруппой индекса два в группе $O_{n,1}$, то существует, с точностью до движения, не более двух невырожденных выпуклых многогранников с заданной матрицей Грама. При этом неопределенность может иметь место только тогда, когда конус \widehat{P} пересекается с обеими связными компонентами конуса V. Но по предложению выше, эта неопределенность снимается. Тогда P-выпуклый многогранник в \mathbb{L}^n , определенный с точностью до движения этого пространства, причем его матрица Грама совпадает с G.

Таким образом, чтобы узнать реализуема ли данная прямоугольная группа Кокстера как группа отражений относительно гиперграней прямоугольного многогранника в \mathbb{L}^n , достаточно посмотреть на матрицу

 $G = (g_{ij})$, построенную по графу $\Gamma(V, E)$ следующим образом:

$$g_{ij} = egin{cases} 1, \ ext{если} \ i=j; \ 0, \ ext{если} \ i,j \in E(\Gamma); \ a_{ij}, \ ext{иначе}. \end{cases}$$

где a_{ij} —неопределенные параметры.

В случае, если существуют неопределенные параметры $a_{ij} \leq -1$, такие, что матрица G удовлетворяет всем условиям теоремы, ответ на сформулированный вопрос положителен.

2. Пространства \mathbb{L}^2 и \mathbb{L}^3

Так как известны комбинаторные строения всех гиперболических прямоугольных многоугольников в n=2, и прямоугольных многогранников конечного объема в случае, когда n=2,3, частично ответ на вопрос можно дать и не прибегая к теореме.

2.1. Двумерный случай

Предложение 2.1. Прямоугольная группа Кокстера RC_{Γ} реализуется как группа отражений прямоугольного многоугольника в \mathbb{L}^2 тогда и только тогда, когда выполнено одно из следующих условий:

- 1) Γ изоморфен простому циклу на трех вершинах без k ребер, $2 \le k \le 3$;
- 2) Γ изоморфен простому циклу на четырех вершинах без k ребер, $1 \le k \le 4$;
- 3) Γ изоморфен простому циклу на $m \geq 5$ вершинах без k ребер, $0 \leq k \leq m, \ m \geq 5;$
- 4) $|V(\Gamma)| = 2$.
- 1) $m \ge 3$, Γ изоморфен простому циклу без k ребер, причем если $m \ge 5$, то $0 \le k \le m$; если m = 4, то $1 \le k \le 4$; если m = 3, то $2 \le k \le 3$;
- 2) m = 2.

Доказательство. Для доказательства достаточно полностью классифицировать прямоугольные многоугольники в плоскости Лобачевского. Будем называть вершины, лежащие на или за абсолютом—особыми. Тогда эта классификация имеет следующий вид:

- 1) треугольник с двумя или тремя особыми вершинами;
- 2) четырехугольник с особыми k вершинами, $1 \le k \le 4$;
- 3) m-угольник с k особыми вершинами, $0 \le k \le m, m \ge 5$;
- 4) плоский угол равный либо $\frac{\pi}{2}$ либо 0.

Тогда многоугольникам типа 1) однозначно соответствуют графы, удовлетворяющие условию 1) и т.д. В последнем четвертом случае, RC_{Γ} изоморфна либо $\mathbb{Z} * \mathbb{Z}$, либо $\mathbb{Z} \times \mathbb{Z}$ (многогранники для этих случаев изображены на Puc.3).

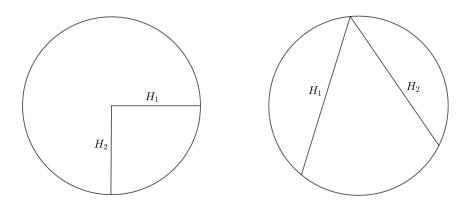


Рис. 2. Неограниченные прямоугольные многогранники при m=2. Слева — $G\cong \mathbb{Z}\times \mathbb{Z}$, справа — $G\cong \mathbb{Z}\times \mathbb{Z}$

2.2. Трехмерный случай

Для ответа на поставленный вопрос в трехмерном случае воспользуемся следующими известными результатами о комбинаторном строении гиперболических прямоугольных многогранников в \mathbb{L}^3 .

Определение 2.2. *k-поясом* называется циклический набор двумерных граней, имеющий пустое пересечение, в котором пересекаются только последовательные грани.

Теорема 2.3. Простой многогранник P (за исключением 3-симплекса) реализуем как ограниченный прямоугольный многогранник в \mathbb{L}^3 , тогда и только тогда, когда он не содержит 3- и 4-пояса.

Такие многогранники называются погореловскими.

Определение 2.4. *Почти погореловскими* называются простые многогранники без 3-поясов, любой 4пояс в которых окружает грань.

В многогранниках конечного объема могут быть вершины на абсолюте, причем все они будут 4-валентными. Если их срезать, то получим простой многогранник, для которого 4-угольные грани будут соответствовать срезанным вершинам.

Теорема 2.5. [3] Срезка 4-валентных вершин устанавливает биекцию между комбинаторными типами прямоугольных многогранников конечного объема в \mathbb{L}^3 и почти погореловскими многогранниками, отличными от куба I^3 и 5-угольной призмы $M_5 \times I$.

Если группа G дискретна, то соотношение в группе отражений G вида $(g_ig_j)^2=1$ однозначно соответствует пересечению гиперплоскостей H_i и H_j в пространстве ее действия, что в свою очередь, однозначно соответствуе пересечению соответствующих гиперграней фундаментального многогранника. Из того, что многогранники конечного объема флаговые, следует, что в случае, если группа G реализуется как группа отражений многогранника конечного объема, то по соотношениям в группе, то есть по попарному пересечению гипеграней, однозначно восстанавливается комбинаторное строение многогранника. Также, заметим, что в этом случае граф Γ совпадает с реберным графом двойственного к P многогранника. Из этих соображений следует следующее предложение.

Определение 2.6. Граф называется *планарным*, если его можно вложить в плоскость без самопересечений, и *максимально планарным*, если при добавлении любого ребра, он перестает быть планарным.

Определение 2.7. Граф называется k-связным, если при удалении менее, чем k вершин, он остается связным.

Теорема 2.8. (Штейница [4]) Граф можно реализовать как реберный граф многогранника в трехмерном пространстве тогда и только тогда, когда это граф 3-связен и ппланарен.

Теорема 2.9. [5] Граф является максимально планарным тогда и только тогда, когда он представляет собой триангуляцию сферы.

Теорема 2.10. Прямоугольная группа RC_{Γ} Кокстера реализуется как группа отражений компактного прямоугольного многогранника в \mathbb{L}^3 тогда и только тогда, когда выполнены следующие условия на граф Γ :

- 1) максимальная планарность;
- 2) 3-связность;
- 3) отсутствие бесхордовых 4-циклов;
- 4) количество 3-циклов l = 2m 4, где $m = |V(\Gamma)|$.

Доказательство. **Необходимость.** Пусть RC_{Γ} реализуется как группа отражений в гипергранях компактного прямоугольного многогранника $Q \subset \mathbb{L}^3$. Тогда $P = Q^*$ — симплициальный многогранник, а его реберный граф изоморфен Γ . Из теоремы 2.9 следует, что граф Γ максимально планарен. Из теоремы Штейница следует, что он 3-связен. Так как Q — погореловский многогранник, то в нем отсутствуют 4-пояса, что эквивалентно отсутствию бесхордовых 4-циклов. Количество граней F, ребер E и вершин V в симплициальном многограннике связаны между собой следующими соотношениями

$$3F = 2E$$
$$F - E + V = 2$$

Остается заметить, что так как в Q нет 3-поясов, грани в P однозначно соответствуют 3-циклам в Γ . Таким образом получаем

$$l = 2m - 4$$

Достаточность. Пусть граф Γ обладает свойствами 1)—4). Для доказательства достаточно построить погореловский многогранник Q, такой, что Γ — граф смежности его граней (или, что эквивалентно, реберный граф двойственного к нему многогранника). Так как граф удовлетворяет условиям 1) и 2), из теоремы Штейница и теоремы 2.9 следует, что существует симплициальный многогранник P, реберный граф которого изоморфен Γ . Докажем, что двойственнный к нему простой многогранник Q— погореловский. Действительно, грани P соответствуют некоторым из 3-циклов Γ , а количество 3-циклов удовлетворяет условию 4), поэтому в P нет реберного 3-цикла, которому бы не соответствовала грань. Следовательно, в Q нет 3-поясов. Заметим, что из условия 3) вытекает, что в Q нет и 4-поясов. Таким образом получаем, что многогранник Q — погореловский, что и требовалось доказать.

Теперь опишем графы соответствующие почти погореловским многогранникам. Это будут графы, отличные от реберных графов куба I^3 и 5-угольной призмы $M_5 \times I$, удовлетворяющие условиям 1), 2) и 4), а условие 3) заменено следующим: для каждого 4-цикла без хорд найдется вершина в $\Gamma(G)$, соединенная со всеми вершинами цикла. Обозначим множество таких графов $\mathfrak A$. Для любого графа $\Gamma(V,E)\in\mathfrak A$ обозначим как $V_\Gamma\subset V$ множество вершин соединенных, как было описано выше, с каждой вершиной 4-циклов без хорд. Тогда из теоремы 2.5 следует

Теорема 2.11. Прямоугольная группа Кокстера RC_{Γ} реализуется как группа отражений компактного прямоугольного многогранника в \mathbb{L}^3 тогда и только тогда, когда Γ изоморфен графу $\tilde{\Gamma} \setminus V_{\tilde{\Gamma}}$, где $\tilde{\Gamma} \in \mathfrak{A}$.

Удалению вершин из $V_{\tilde{\Gamma}}$ при этом соответствует "обратная срезка" идеальных вершин в многограннике P.

3. Выводы

В работе были найдены критерии, позволяющие ответить на сформулированный вопрос в некоторых частных случаях, а именно, когда X — это плоскость Лобачевского \mathbb{L}^2 , когда X — это пространство Лобачевского \mathbb{L}^3 , а фундаментальный многогранник P компактен или имеет конечный объем. Однако, ответить на него в общем случае на данный момент представляется довольно затруднительным. В частности, до сих пор ничего не известно о строении прямоугольных многогранников в гиперболическом пространстве размерности большей трех. В некоторых случаях, компьютерными алгоритмами возможно узнать существуют ли в области определения неопределенные параметры, для которых матрица G(P) удовлетворяет всем условиям теоремы 2. Для этого необходимо рассмотреть систему из равенств и неравенств, вытекающую из сравнения с нулем миноров матрицы. Однако, даже с таким подходом, пока что невозможно сказать что либо про группы, фундаментальный многогранник которых имеет неконечный объем.

Приложение

Известно, что компактный прямоугольный m-угольник однозначно задается m-3 параметрами. Докажем следующее

Предложение 3.1. Длины ребер l_i компактного прямоугольного многогранника удовлетворяют следующим соотношениям:

$$(\cosh l_i^2 - 1)(\cosh l_{i+1}^2 - 1) > 1, \ \forall i$$
 (1)

 $i\partial e\ i,i+1$ берутся по модулю т

Доказательство. Сначала проиллюстрируем это геометрически. Для этого воспользуемся моделью Пуанкаре в круге (с радиусом равным единице). Изометрией поместим вершину при i и i+1 ребрах в точку (0,0), конец i-го ребра в $(x_0,0)$,а конец i+1-го ребра в $(0,y_0)$. Тогда для того, чтобы эти ребра являлись ребрами прямоугольного многоугольника необходимо, чтобы окружности, перпендикулярные ребрам и к граничной окружности не пересекались. Обозначим как r_1 и r_2 радиусы этих окружностей, а как O_1 и O_2 их центры. Тогда

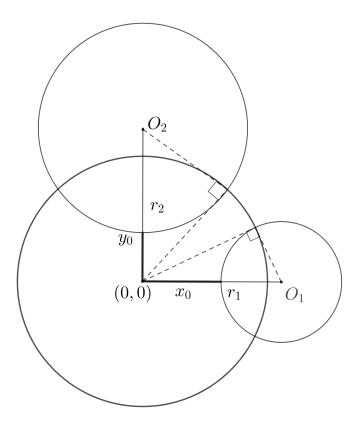


Рис. 3. К выводу соотношения (1)

$$|O_1O_2| > r_1 + r_2 \tag{2}$$

А из перпендикулярности этих окружностей с граничной следует, что

$$(x_0 + r_1)^2 = r_1^2 + 1$$

 $(y_0 + r_2)^2 = r_2^2 + 1$

Из последних двух равенств однознозначно выражаются r_1 и r_2

$$r_1 = \frac{1 - x_0^2}{2x_0}$$
$$r_2 = \frac{1 - y_0^2}{2y_0}$$

Используя это вместе с (2), получаем следующее условие на x_0, y_0

$$\frac{(x_0^2 - 1)(y_0^2 - 1)}{4x_0y_0} < 1$$

Гиперболические длины l_i и l_{i+1} выражаются через координаты как

$$l_{i+1} = |\ln \frac{(0-i)(y_0 i + i)}{(0+i)(y_0 i - i)}| = -\ln(\frac{1-y_0}{1+y_0})$$
$$l_i = |\ln \frac{(0-1)(x_0+1)}{(0+1)(x_0-1)}| = -\ln(\frac{1-x_0}{1+x_0})$$

То есть

$$x_0 = \tanh \frac{l_i}{2}$$
$$y_0 = \tanh \frac{l_{i+1}}{2}$$

А условие (2) запишется как

$$\frac{(1-\tanh^2\frac{l_i}{2})(1-\tanh^2\frac{l_{i+1}}{2})}{4\tanh\frac{l_i}{2}\tanh\frac{l_{i+1}}{2}} = \frac{2\cdot 2}{4\sinh l_i\sinh l_{i+1}} < 1$$

что эквивалентно условию (1)

Доказать выполнение условия (1) можно также из теоремы Э.Б. Винберга, сформулированной раннее. Для этого запишем матрицу $G(P) = (g_{ij})$, где P-m-угольник.

$$G = \begin{pmatrix} 1 & 0 & -\cosh l_2 & \dots & 0 \\ 0 & 1 & 0 & \dots & -\cosh l_1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & -\cosh l_1 & g_{3m} & \dots & 1 \end{pmatrix}$$

$$g_{ii} = 1$$
, $g_{ii+1} = 0$, $g_{ii+2} = -\cosh l_{i+1}$

где i берутся по модулю m. Так как rankG(P)=3, следовательно все миноры 4-го порядка вырождены. В частности миноры вида

$$\begin{pmatrix} 1 & 0 & -\cosh l_i & g_{i-1i+2} \\ 0 & 1 & 0 & -\cosh l_{i+1} \\ -\cosh l_i & 0 & 1 & 0 \\ g_{i-1i+2} & -\cosh l_{i+1} & 0 & 1 \end{pmatrix}$$

что эквивалентно

$$(\cosh^2 l_i - 1)(\cosh^2 l_{i+1} - 1) = q_{i-1,i+2}^2 > 1$$

Список литературы

- [1] Э. Б. Винберг, Гиперболические группы отражений, Успехи математических наук, 1985, том 40, выпуск 1(241), с. 29
- [2] Э. Б. Винберг, Дискретные группы, порожденные отражениями, в пространствах Лобачевского, Математический сборник, 1967, том 72(114), номер 3, с. 435
- [3] Н. Ю. Ероховец, Комбинаторика выпуклых многогранников и приложение к фуллеренам. Итоговый отчет за 2018 год, https://ium.mccme.ru/rym/2015/reports/Erokhovets_otchet2018.pdf
- [4] В. В. Прасолов, Графы рёбер многогранников, Матем. обр., 2000, выпуск 1(12), 2-12
- [5] В.А. Емеличев, О.И. Мельников, В.И. Сарванов, Р.И. Тышкевич, Лекции по теории графов, Наука, 1990, с.158