Московский государственный университет имени М.В. Ломоносова

Механико-математический факультет Кафедра высшей геометрии и топологии

 A_{∞} -структуры, формальность алгебр и описание гомотопических инвариантов пространств

Курсовая работа студента 4 курса 403 группы Граумана Владислава Александровича

Научный руководитель: доктор физико-математических наук, профессор Панов Тарас Евгеньевич

1. Введение

Понятие формальности для DG-алгебр — явления, когда гомотопический тип алгебры есть формальное следствие её когомологий — уже давно показало в математике свою высокую значимость. Формальность алгебр, связанных с топологическим пространством может быть использовано для получения более полной информации о его гомотопических свойствах. Установление факта формальности алгебры или пространства в общем случае является высоко нетривиальной задачей. Известно, к примеру, наличие ряда препятствий к формальности алгебры — наличие нетривиальных когомологических операций, называемых произведениями Масси. К сожалению, эти операции не являются единственными препятствиями и существуют неформальные алгебры с тривиальными произведениями Масси. В такой ситуации интерес представляют результаты, представляющие собой критерии. Связь (ко-)формальности пространства и свойств его различных алгебраических инвариантов также непроста и во многих случаях оказывается источником открытых вопросов. Эта работа посвящена результатам в этих двух направлениях.

Формальность DG-алгебры тесно связана (и может быть альтернативно сформулирована) в терминах A_{∞} -структур на её когомологиях, однако в общем случае вычисление этой структуры сопряжено со сложностями. Один из критериев формальности DG и A_{∞} -алгебр был предложен Дмитрием Калединым (см. изложение В.А. Лунца [5]), и сводил задачу к занулению определенного класса в когомологиях Хохшильда некоторой A_{∞} -алгебры особого вида, ассоциированной с исходной алгеброй. Мы даём альтернативную формулировку критерия Каледина в терминах алгебр, не включающих присоединение формальной переменной, и, отправляясь от этого, доказываем критерии формальности в терминах некоторой спектральной последовательности. Аналогичные результаты получены также и для L_{∞} -случая. Мы используем эти результаты для доказательства некоторых следствий о формальности сумм и тензорных произведений.

Как установлено в работе Найзендорфера и Миллера [1], формальность пространства эквивалентна занулению пертурбации дифференциала на модели Квиллена, а коформальность — на минимальной модели пространства. Таким образом, наличие, например, кубических, четверных и т.д. соотношений в рациональной гомотопической алгебре пространства свидетельствует о его неформальности, а таких соотношений в его когомологиях — об отсутствии коформальности. Мы продолжаем эту связь дальше: доказывается, что существуют A_{∞} и L_{∞} -структуры на когомологиях и рациональной гомотопической алгебре Ли пространства соответственно. Это позволяет нам судить о наличии или отсутствии высших соотношений в этих инвариантах, и уточняет их роль как препятствий к (ко-)формальности. Полученные результаты дают инструмент для полного подсчёта рациональных гомотопических алгебр (или же алгебр Понтрягина) для некоторых пространств.

Структура работы такова.

В разделах 2.1-2.3 излагаются предварительные определения и утверждения, связанные с A_{∞} -структурами, включая свойства и объекты, необходимые для дальнейшей работы с формальностью.

В разделе 2.4 определяется когомологический критерий формальности, установленный Калединым.

В разделе 2.5 определены L_{∞} -алгебры, а также приведены нужные для работы с ними сведения о симметрических алгебрах и коалгебрах.

В разделе 3.1 доказан результат о связи соотношений в рациональной гомотопической алгебре и A_{∞} -структур на приведённых рациональных гомологиях (следствие 2), и аналогичный результат для соотношений в рациональных гомологиях и L_{∞} -структуры на гомотопической алгебре (следствие 3). Они получаются применением соответственно теорем 3 и 4 к модели Квиллена и минимальной коалгебраической модели пространства.

В разделе 3.2 доказывается критерий формальности, основанный на спектральной последовательности, ассоциированной с комплексом особого вида (теорема 5) и предложение 4 о трансфере формальности.

Автор желает выразить благодарность своему научному руководителю Панову Тарасу Евгеньевичу за очень ценные замечания и вопросы по содержанию работы, без которых она не приняла бы настоящий вид.

2. Предварительные сведения

2.1. A_{∞} -структуры. Здесь мы кратко изложим основные определения и результаты, связанные с A_{∞} -(ко-)алгебрами. Одним из стандартных введений является работа Келлера [8].

Зафиксируем коммутативное кольцо с единицей R. Здесь и далее непомеченные тензорные произведения \otimes понимаются над R.

Определение 1. A_{∞} -алгеброй над R называют \mathbb{Z} -градуированный R-модуль $A=\bigoplus_{p\in\mathbb{Z}}A^p$, снабжённый совокупностью однородных R-линейных отображений

$$m_n: A^{\otimes n} \to A, n \in \mathbb{N}$$

степени 2-n, удовлетворяющим тождествам Сташеффа

(SI_n)
$$\sum_{\substack{r+s+t=n\\rt>0 \ s>1}} (-1)^{r+st} m_{r+1+t} (\mathrm{id}^{\otimes r} \otimes m_s \otimes \mathrm{id}^{\otimes t}) = 0$$

В частности, m_2 можно интерпретировать как умножение в алгебре, а m_1 — дифференциал, удовлетворяющий тождеству Лейбница относительно m_2 .

Двойственным образом под A_{∞} -коалгеброй понимается \mathbb{Z} -градуированный R-модуль $C = \bigoplus_{p \in \mathbb{Z}} C_p$ с заданной совокупностью однородных R-линейных отображений

$$\Delta_n: C \to C^{\otimes n}, n \in \mathbb{N}$$

степени n-2, удовлетворяющим тождествам Сташеффа

$$(SI_n^*) \sum_{\substack{r+s+t=n\\r,t\geqslant 0,s\geqslant 1}} (-1)^{r+st} (\mathrm{id}^{\otimes r} \otimes \Delta_s \otimes \mathrm{id}^{\otimes t}) \Delta_{r+1+t} = 0.$$

При применении этих тождеств к элементам модуля употребляется известное соглашение о знаках Кошуля. Далее для удобства мы формулируем свойства для A_{∞} -алгебр, случай коалгебр определятся по двойственности. A_{∞} -(ко-)алгебры образуют категорию при задании морфизмов следующим образом.

Определение 2. Морфизм A_{∞} -алгебр или A_{∞} -морфизм $f:A\to B$ это совокупность однородных R-линейных отображений

$$f_n: A^{\otimes n} \to B, n \in \mathbb{N}$$

степени 1 - n, удовлетворяющих тождествам

$$(MI_n) \sum_{\substack{r+s+t=n\\r,t\geqslant 0,s\geqslant 1}} (-1)^{r+st} f_{r+1+t}(\mathrm{id}^{\otimes r} \otimes m_s \otimes \mathrm{id}^{\otimes t}) = \sum_{r=1}^{\infty} (-1)^{s} m_r (f_{i_1} \otimes f_{i_2} \otimes \cdots \otimes f_{i_r}),$$

где суммирование в правой части производится по всем $1 \leqslant r \leqslant n$ и разложениям $n = i_1 + \cdots + i_r$ в сумму натуральных чисел; знак определён как

$$s = (r-1)(i_1-1) + (r-2)(i_2-1) + \dots + 2(i_{r-2}-1) + (i_{r-1}-1).$$

Морфизм f есть κ 6азиизоморфизм, если f_1 является квазиизоморфизмом. Морфизм f строгий, если $f_n=0$ при $n\geqslant 2$. Композиция $f:B\to C$ и $g:A\to B$ задаётся как

$$(f \circ g)_n = \sum (-1)^s f_r(g_{i_1} \otimes g_{i_2} \otimes \cdots \otimes g_{i_r}),$$

где знак и суммирование такие же, как в тождествах, определяющих морфизмы.

Мы говорим, A_{∞} -алгебры A и B квазиизоморфни, если существуют A_{∞} -алгебры A_1, \ldots, A_k и квазиизоморфизмы

$$A \leftarrow A_1 \rightarrow \cdots \leftarrow A_k \rightarrow B$$
.

Определение 3. A_{∞} -алгебра A называется формальной, если она квазиизоморфна A_{∞} -алгебре $(H(A), (0, m_2, 0, \dots))$, где m_2 индуцировано умножением на A.

Мы говорим, что A_{∞} -алгебра A строго унитальна, если в ней есть элемент 1_A степени ноль такой, что $m_1(1_A)=0, m_2(1_A,a)=a=m_2(a,1_A)$ для всех $a\in A$ и что для всех $i\geqslant 3$ и всех $a_1,\ldots,a_i\in A$ произведение $m_i(a_1,\ldots,a_i)$ обращается в ноль, если хотя бы один из a_j равен 1_A . Если A и B — строго унитальные A_{∞} -алгебры, то A_{∞} -морфизм $f:A\to B$ строго унитальна, если $f_1(1_A)=1_B$ и для всех $i\geqslant 2$ и всех $a_1,\ldots,a_i\in A$ элемент $f_i(a_1,\ldots,a_i)$ обращается в ноль, если хотя бы один из a_j равен 1_A . Каждая строго унитальная A_{∞} -алгебра A имеет строгий морфизм $\eta:R\to A$, переводящий 1_R в 1_A . Она аугментирована, если задан строго унитальный морфизм $\varepsilon:A\to k$ такой, что $\varepsilon\circ\eta=\mathrm{id}_R$. Морфизм аугментированных A_{∞} -алгебр это строго унитальный морфизм $f:A\to B$ такой, что $\varepsilon_B\circ f=\varepsilon_A$. Функтор $A\mapsto\ker\varepsilon_A$ определяет эквивалентность из категории аугментированных A_{∞} -алгебр в категорию A_{∞} -алгебр.

2.2. **Бар-конструкция для** A_{∞} **-алгебр.** Понятия A_{∞} -алгебр и A_{∞} -морфизмов могут быть естественным образом описаны на языке бар-конструкций. Пусть A — когомологически \mathbb{Z} -градуированный R-модуль, и sA — его надстройка, определяемая равенством $(sA)^n = A^{n+1}$. Положим

$$\overline{T}sA = \bigoplus_{i \geqslant 1} (sA)^{\otimes i},$$

иными словами, это усечённая тензорная коалгебра на sA со стандартным коумножением $\Delta: \overline{T}sA \to \overline{T}sA \otimes \overline{T}sA$, задаваемым деконкатенацией

(1)
$$\Delta(a_1 \otimes \cdots \otimes a_n) = \sum_{i=1}^{n-1} (a_1 \otimes \cdots \otimes a_i) \otimes (a_{i+1} \otimes \cdots \otimes a_n),$$

и $\Delta(a)=0$ для всех a из A. Обозначим за $\operatorname{Coder}(\overline{T}sA)$ градуированный R-модуль однородных R-линейных кодериваций коалгебры $\overline{T}sA$. Композиция кодеривации с проекцией $\overline{T}sA \to sA$ определяет изоморфизм градуированных R-модулей

$$\operatorname{Coder}(\overline{T}sA) \cong \operatorname{Hom}_{R}^{*}(\overline{T}sA, sA),$$

то есть каждая кодеривация d степени p имеет каноническое разложение $d=d_1+d_2+d_3+\ldots$, где $d_i:(sA)^{\otimes i}\to sA$ — однородное R-линейное отображение степени p.

Пусть теперь A снабжён структурой аугментированной A_{∞} -алгебры $m_i:A^{\otimes i}\to A$, и пусть $I=\ker \varepsilon$ обозначает идеал аугментации. Будем рассматривать сдвиг градуировки как отображение степени -1 $s:I\to sI$, совпадающее с тождественным в категории R-модулей. Зададим отображения $b_i:(sI)^{\otimes i}\to sA$, исходя из коммутативности следующей диаграммы

$$I^{\otimes i} \xrightarrow{m_i} I$$

$$s^{\otimes i} \downarrow \qquad \qquad \downarrow s$$

$$(sI)^{\otimes i} \xrightarrow{b_i} sI$$

Факт того, что m_i задают A_{∞} -структуру, эквивалентен тому, что b_i являются компонентами в разложении некоторой кодеривации d степени 1, для которой d = 0. Символом m мы будем обозначать A_{∞} -структуру на A, воспринимаемую как кодеривацию степени 1 на $\overline{T}sI$.

Определение 4. Полученную DG-коалгебру $(\overline{T}sI, m)$ называют бар-конструкцией A_{∞} -алгебры A. Обозначим её $\mathcal{B}A$.

Если B — ещё одна A_{∞} -алгебра, то существует естественная биекция между A_{∞} -морфизмами $A \to B$ и морфизмами степени ноль коалгебр $\mathcal{B}A \to \mathcal{B}B$. Мы будем использовать одинаковые обозначения для морфизмов, соответствующих друг другу посредством этой биекции.

Замечание. Определение бар-конструкции вариативно в A_{∞} -случае. Взятие ядра аугментации необходимо для обеспечения гомотопической нетривиальности функтора бар-конструкции, так как в случае строго унитальной A_{∞} -алгебры если не брать идеал аугментации, то полученная применением функтора коалгебра будет гомотопически эквивалентна тривиальной, и бар-конструкция не будет резольвентой. Утверждения о формальности и минимальных моделях из следующего параграфа справеливы, впрочем, и если в определении I заменить на A. Такое определение используется, например, в [5], [8], и в этом случае уже не будет совпадать с определением бар-конструкции в DG-случае.

2.3. A_{∞} -алгебры и минимальные модели. Мы ограничимся рассмотрением класса A_{∞} -алгебр, обладающих следующим свойством.

Определение 5. A_{∞} -алгебра A называется nлоской 1 , если каждый R-модуль когомологий $H^i(A)$ R-проективен.

Над полем всякая A_{∞} -алгебра плоская. Напомним следующий известный результат Кадеишвили.

Теорема 1 ([15]). Пусть A- плоская A_{∞} -алгебра, $u g : H(A) \to A-$ квази- изоморфизм цепных комплексов R-модулей, где дифференциал на H(A) тожс- дественно нулевой. Тогда существует структура минимальной A_{∞} -алгебры на H(A), где m_2 индуцировано умножением на A, а также A_{∞} -морфизм $f=(g_1,g_2,\dots):H(A)\to A$, где $g_1=g$.

Мы называем так полученную A_{∞} -алгебру минимальной моделью для A. Она единственна с точностью до A_{∞} -квазиизоморфизма. Заметим, что для A_{∞} -алгебр понятие квазиизоморфность совпадает с существованием квазиизоморфизма между ними. Квазиизоморфные плоские A_{∞} -алгебры имеют изоморфные бар-конструкции.

Как следует из определения A_{∞} -алгебры, DG-алгебра есть ни что иное, как A_{∞} -алгебра, у которой $m_i=0$ при $i\geqslant 3$. Под морфизмом DG-алгебр мы понимаем морфизм ассоциативных алгебр, коммутирующий с дифференциалами. Таким образом, категория DG-алгебр не является полной подкатегорией в категории A_{∞} -алгебр. Для DG-алгебр (даже для плоских) в общем случае не верен тот факт, что квазиизоморфные DG-алгебры могут быть связаны одним квазиизоморфизмом. Для плоских DG-алгебр справедлив следующий важный результат.

Предложение 1. Пусть E, F- плоские DG-алгебры u A, B- ux минимальные модели соответственно. Тогда эквивалентны следующие утверждения.

- (1) E, F DG-квазиизоморфны;
- (2) E, F A_{∞} -квазиизоморфны;
- (3) A, B A_{∞} -квазиизоморфны;
- $(4) \ \mathcal{B}A, \ \mathcal{B}B \ A_{\infty}$ -квазиизоморфны.

Как и ранее, мы говорим, что DG-алгебра E формальна (в DG-смысле), если она квазиизоморфна алгебре H(E) с нулевым дифференциалом и индуцированным с E умножением.

Следствие 1. Пусть E — минимальная плоская DG R-алгебра c минимальной моделью A. Тогда E DG-формальна тогда u только тогда, когда A формальна как A_{∞} -алгебра.

Таким образом, в плоском случае мы можем исследовать формальность DG-алгебр, используя лишь их минимальные модели. В дальнейшем мы подразумеваем, что все A_{∞} и DG-алгебры плоские.

2.4. **Класс Каледина.** Пусть A — плоская минимальная A_{∞} R-алгебра. Рассмотрим градуированный модуль $\operatorname{Coder}(\overline{T}sA)$, и определим на нём отображение степени 1, заданное как $d\mapsto [m_A,d]=m_A\cdot d-(-1)^{\deg d}d\cdot m_A$, где d — кодеривация на $\overline{T}sA$, m_A — структура A_{∞} -алгебры на A, воспринимаемая как кодеривация, и умножение кодериваций понимается как их композиция. Так как $m_A^2=0$, то $[m_A,\cdot]$ является дифференциалом на $\operatorname{Coder}(\overline{T}sA)$. Таким образом, мы получили

¹Это определение *не* совпадает с обычным определением плоского модуля.

цепной комплекс R-модулей, называемый комплексом Хохшильда. Обозначим его $C_R^*(A)$. Его когомологии со сдвигом в индексе

$$HH_R^{i+1}(A) := H^i(C_R^*(A))$$

называются *когомологиями Хохшильда А*. Квазиизоморфные плоские A_{∞} -алгебры имеют изоморфные бар-конструкции, так что их когомологии Хохшильда также изоморфны.

В терминах комплекса Хохшильда Дмитрий Каледин ([13]) сформулировал критерий формальности для A_{∞} -алгебр. Этот критерий может быть также распространён на случай DG-алгебр Ли, как отмечено в [5].

Зафиксируем k — поле характеристики ноль, и R — коммутативную k-алгебру. Если M является R-модулем, то можно определить модуль степенных рядов от формальной переменной h как

$$M[[h]] = \lim_{\leftarrow} M[h]/h^n = \lim_{\leftarrow} (M \otimes R[h])/h^n,$$

где для R[h]-модуля E мы обозначили $E/h^n:=E/h^n\cdot E$. Мы воспринимаем M[[h]] как R[[h]]-модуль. В общем случае мы говорим, что R[[h]]-модуль P h-свободный полный, если он изоморфен $\overline{P}[[h]]$, где $\overline{P}=P/h$.

Заметим, что M[[h]] канонически отождествляется с множеством формальных степенных рядов $\sum_{i=0}^{\infty} m_i h^i$, $m_i \in M$. Аналогичное отождествление для произвольного h-свободного полного модуля возможно, когда задано отображение выбора представителей $\overline{P} \to P$.

Пусть B-h-свободный полный R[[h]]-модуль со структурой A_{∞} -алгебры (B,m) (напомним, что все алгебры считаются плоскими). Выберем отображение выбора $\overline{B} \to B$ в категории R-модулей, где $\overline{B} = B/h$. Тогда можно записать

$$m = m^{(0)} + m^{(1)}h + m^{(2)}h^2 + \dots$$

для некоторых кодериваций $m^{(i)} \in C^1_R(\overline{B})$. Рассмотрим кодеривацию

$$\partial_h m = m^{(1)} + 2m^{(2)}h + 3m^{(3)}h^2 + \dots \in C^1_{R[[h]]}(B).$$

Тогда $\partial_h m$ является коциклом в комплекса Хохшильда и потому определяет класс $[\partial_h m] \in HH^2_{R[[h]]}(B)$.

Определение 6. Класс $[\partial_h m] \in HH^2_{R[[h]]}(B)$ называется *классом Каледина В* и обозначается K_B . Он не зависит от отображения выбора представителей $\overline{B} \to B$. Определение класса Каледина справедливо и для минимальных (плоских) A_∞ $R[h]/h^{n+1}$ -алгебр. Мы рассматриваем класс $K_{B/h^{n+1}}$ для A_∞ $R[h]/h^{n+1}$ -алгебры B/h^{n+1} как элемент в $HH^2_{R[h]/h^n}(B/h^n)$.

Пусть A=(A,m) — минимальная плоская A_{∞} R-алгебра. Рассмотрим A_{∞} R[h]-алгебру $\tilde{A}=(A[h],\tilde{m}=(m_2,m_3h,m_4h^2,\dots))$. Алгебру \tilde{A} называют $\partial e \phi o p$ -мацией κ нормальному конусу A. Если A(2) обозначает алгебру $(A,(m_2,0,0,\dots))$, то A и A(2) квазиизоморфны тогда и только тогда, когда квазиизоморфны \tilde{A} и A(2)[h]. Поэтому A формальна тогда и только тогда, когда \tilde{A} формальна. Более того, при помощи \tilde{A} мы можем определить отклонение алгебры от формальности.

Определение 7. A_{∞} R-алгебра A называется n-формальной, если существует квазиизоморфизм A_{∞} $R[h]/h^{n+1}$ -алгебр $\gamma: \tilde{A}/h^{n+1} \to A(2)[h]/h^{n+1}$ такой, что $\gamma \equiv (\mathrm{id},0,0,\dots)(\mathrm{mod}h)$.

Каледин [13] доказал, что классы $K_{\tilde{A}}, K_{\tilde{A}/h^{n+1}}$ дают критерии формальности A_{∞} -алгебр.

Теорема 2 ([13],[5]). Минимальная плоская A_{∞} R-алгебра A формальна тогда u только тогда, когда $K_{\tilde{A}}=0$. Она n-формальна тогда u только тогда, когда $K_{\tilde{A}/h^{n+1}}=0$.

2.5. L_{∞} -структуры. Так как наши результаты будут иметь аналоги для L_{∞} -структур, мы также дадим определение L_{∞} -алгебры, но за более подробной информацией отсылаем читателя к стандартной литературе, например, [3].

Определение 8. L_{∞} -алгеброй называют градуированное векторное пространство $L = \bigoplus_{n \in \mathbb{Z}} L_n$ над R, снабжённое совокупностью R-линейных однородных отображений

$$\ell_n: L^{\otimes n} \to L, n \in \mathbb{N}$$

степени n-2, удовлетворяющими для каждого $n \in \mathbb{N}$ следующим условиям. Во-первых, для каждой перестановки σ на n элементах

$$\ell_n(x_{\sigma(1)} \otimes \cdots \otimes x_{\sigma(n)}) = \operatorname{sgn}(\sigma)\varepsilon(\sigma)\ell_n(x_1 \otimes \cdots \otimes x_n),$$

а во-вторых, справедливо обобщение тождества Якоби

$$\sum_{i+j=n+1} \sum_{\sigma \in Sh(i,n-i)} \operatorname{sgn}(\sigma) \varepsilon(\sigma) (-1)^{i(j-1)} \ell_j(\ell_i(x_{\sigma(1)} \otimes \cdots \otimes x_{\sigma(i)}) \otimes x_{\sigma(i+1)} \otimes \cdots \otimes x_{\sigma(n)}) = 0,$$

где $\mathrm{Sh}(i,n-i)$ — множество (i,n-i)-тасующих перестановок, то есть таких $\sigma \in S_n$, что $\sigma(1) < \cdots < \sigma(i)$ и $\sigma(i+1) < \cdots < \sigma(n)$, а $\varepsilon(\sigma)$ — знак, получаемый из применения правила Кошуля (для перестановки пары элементов x,y появляется знак $(-1)^{\deg x \deg y}$).

Положим теперь, что V — DG-векторное пространство. Далее нам также понадобятся определения следующих объектов.

Пусть $T(V)=\bigoplus_{i\geqslant 0}V^{\otimes i}$ — тензорная алгебра на V, а I — идеал в ней, порождённый всеми элементами $x\otimes y-(-1)^{\deg x \deg y}y\otimes x$, где $x,y\in V$. Фактор-алгебра S(V):=T(V)/I называется симметрической алгеброй на V, она коммутативна. Обозначим как $\pi:T(V)\to S(V)$ каноническую проекцию. Про элементы из $S^n(V)=\pi(V^{\otimes n})$ будем говорить, что их длина равна n. Мы также обозначим индуцированное умножение на S(V) символом \vee , то есть $\pi(x\otimes y)=x\vee y$.

На T(V) существует стандартное коумножение Δ , заданное как $\Delta(1)=1\otimes 1$, и для $x\in \overline{T}(V)$ $\Delta(x)=x\otimes 1+1\otimes x+\overline{\Delta}(x)$, где $\overline{\Delta}$ — деконкатенация (1). Отображение $N:S(V)\to T(V)$, действующее по правилу $N(1)=1,\ N(v)=v,$ $v\in V$, и

$$N(v_1 \vee \cdots \vee v_n) = \frac{1}{n!} \sum_{\sigma \in S_n} \varepsilon(\sigma) v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(n)}, \quad v_1, \dots, v_n \in V,$$

является инъективным, причём $\pi \circ N = \mathrm{id}_{S(V)}$. Известно, что $\mathrm{Im}(N) \subset T(V)$ есть подкоалгебра T(V), поэтому можно индуцировать коумножение Δ_S на $S(V) \cong \mathrm{Im}(N)$. В этом случае оно примет вид

$$(2) \ \Delta_S(v_1 \vee \cdots \vee v_n) = \sum_{i=0}^n \sum_{\sigma \in Sh(i,n-i)} \varepsilon(\sigma)(v_{\sigma(1)} \vee \cdots \vee v_{\sigma(i)}) \otimes (v_{\sigma(i+1)} \vee \cdots \vee v_{\sigma(n)}).$$

Это коумножение кокоммутативно и согласовано с умножением. Напомним, что свойство однородного линейного отображения $d:C\to C$ на коалгебре C быть кодеривацией означает, что $\Delta_C\circ d=(d\otimes 1+1\otimes d)\circ \Delta_C$. Важным для нас будет следующее утверждение.

Лемма 1 ([3]). Пусть C- кокоммутативная коалгебра, $u\ f:C\to S(V)-$ гомоморфизм коалгебр. Обозначим как $\operatorname{pr}_V:S(V)\to V$ каноническую проекцию. Линейное отображение

$$\operatorname{Coder}(C, S(V)) \to \operatorname{Hom}(C, V), \quad d \mapsto \operatorname{pr}_V \circ d$$

есть изоморфизм. Его обратный задаётся как

$$\operatorname{Hom}(C,V) \to \operatorname{Coder}(C,S(V)), \quad \lambda \mapsto \vee \circ (\lambda \otimes f) \circ \Delta_C.$$

Для L_{∞} -алгебр поэтому справедливы некоторые аналоги свойств A_{∞} -алгебр. Мы далее также будем использовать следующий результат.

Предложение 2 ([3]). L_{∞} -структура на градуированном векторном пространстве L эквивалентна совокупности линейных отображений $\lambda_k: S^k(sL) \to sL$, $k \in \mathbb{N}$ таких, что

$$\sum_{i+j=n+1} \sum_{\sigma \in Sh(i,n-i)} \varepsilon(\sigma) \lambda_j(\lambda_i(x_{\sigma(1)},\ldots,x_{\sigma(i)}),x_{\sigma(i+1)},\ldots,x_{\sigma(n)}) = 0$$

 ∂ ля всех $n \in \mathbb{N}$.

3. Результаты

3.1. О связи (ко-)формальности, соотношений в алгебрах и A_{∞}, L_{∞} структур. Для формулировки и доказательства наших основных результатов сделаем краткое напоминание об алгебрах Ли и дифференциалах на них. Далее если модуль A градуирован гомологически, то считаем, что оператор сдвига действует как $(sA)_n = A_{n-1}$, а если когомологически, то тогда $(sA)^n = A^{n+1}$.

Свободная алгебра Ли F(V) на векторном пространстве V вместе с каноническим линейным вложением $V \to F(V)$ характеризуются универсальным свойством: для всякого линейного отображения $f: V \to L$, где L — алгебра Ли, существует единственный морфизм алгебр Ли $\overline{f}: F(V) \to L$ такой, что композиция $V \to F(V) \to L$ равна f.

Другое описание F(V) таково. Зададим на алгебре T(V) коумножение $\Delta(x) = x \otimes 1 + 1 \otimes x$ для $x \in V$, а на остальных элементах так, чтобы T(V) стала алгеброй Хопфа. Тогда можно положить F(V) = PT(V).

Пусть в пространстве V выбран базис (v_i) . Напомним, что в векторном пространстве F(V) свободной алгебры Ли существует базис, в котором все элементы будут правонормированными итерированными скобками

$$[v_{j_1}, [v_{j_2}, \dots, [v_{j_{k-1}}, v_{j_k}] \dots]]$$

от векторов v_j (см., например, [14]). При этом, конечно, не все скобки вида (3) войдут в базис. Мы будем говорить, что вложенная скобка (3) имеет $\partial \Lambda u h y k$.

Пусть L — DG-алгебра Ли с дифференциалом d степени -1, и QL = L/[L, L] обозначает абелианизацию L. Выберем базис (x_j) в QL и расщепление $QL \to L$, так что мы можем рассматривать (x_j) как минимальный набор порождающих

элементов L. Действие дифференциала на x_j в таком случае можно записать в виде конечной суммы

$$d(x_{\alpha}) = \sum_{i} x_{i} + \sum_{j,k} [x_{j}, x_{k}] + \sum_{l,m,n} [x_{l}, [x_{m}, x_{n}]] + \dots,$$

правая часть этого равенства представляет собой разложение по длинам вложенных скобок. Выделим линейное отображение, действующее по правилу

$$x_i \mapsto \sum_{j_1,\dots,j_k} [x_{j_1},\dots,[x_{j_{k-1}},x_{j_k}]\dots]$$

и продолжим его до деривации d^k на L. В таком случае дифференциал d на L представляется в виде суммы $d = d^1 + d^2 + d^3 + \dots$ дериваций, где d^k повышает длину скобок от неразложимых элементов x_i на k-1.

Теорема 3. Пусть L — минимальная DG-алгебра \mathcal{I} и, без учёта дифференциала совпадающая со свободной алгеброй \mathcal{I} и F(V) на DG-векторном пространстве V. Тогда на sHQL существует структура минимальной A_{∞} -коалгебры $\Delta = (\Delta_2, \Delta_3, \dots)$, обладающей следующим свойством. Если

$$d^{n}(x) = \sum_{j} [x_{1}^{(j)}, [x_{2}^{(j)}, \dots, [x_{n-1}^{(j)}, x_{n}^{(j)}] \dots]],$$

где d^n-n -ая компонента дифференциала на $L, x \in V, x_i \in V,$ то

$$\Delta_n(s\bar{x}) = \sum_j [s\bar{x}_1^{(j)}, [s\bar{x}_2^{(j)}, \dots, [s\bar{x}_{n-1}^{(j)}, s\bar{x}_n^{(j)}]] \dots],$$

где \bar{y} обозначает цикл с представителем y, а в последнем равенстве обозначено $[sa,sb]=(-1)^{\deg a}sa\otimes sb-(-1)^{(\deg a+1)\deg b}sb\otimes sa.$

Доказательство. Рассмотрим фильтрацию L, задаваемую длинами слов от неразложимых элементов: $F_0(L) = L$, $F_{-1}(L) = [L, L], \ldots, F_{-n}(L) = [L, F^{-n+1}(L)]$. Иными словами, $F_{-n}(L)$ есть элементы L, представимые в виде суммы вложенных скобок от неразложимых элементов с длинами не меньше n. Эта фильтрация даёт спектральную последовательность алгебр Ли с $E^0(L) = F(V)$, $E^1(L) = F(HV) = F(HQL)$, $E^1_{0,n} = H_nQL$.

Прежде всего произведём вычисление дифференциалов d_r в этой последовательности. Напомним определение модулей $E^r_{p,q}$, составляющие листы спектральной последовательности, ассоциированной с фильтрованным объектом L: (4)

$$E_{p,q}^r = \frac{\{x \in F_p L_{p+q} : dx \in F_{p-r} L_{p+q-1}\}}{\{x \in F_{p-1} L_{p+q} : dx \in F_{p-r} L_{p+q-1}\} + \{x \in F_p L_{p+q} : x = dy, y \in F_{p+r-1} L_{p+q+1}\}}$$

Для наших целей нам достаточно определить дифференциалы d_r на элементах из $E^r_{0,*}$, где $r\geqslant 1$. Образ $E^r_{0,n}$ под действием d_r лежит в $E^r_{-r,n+r-1}$ для всех целых n. Обозначим как d дифференциал на L. Согласно определению (4), имеем, вопервых,

$$E_{0,n}^{r} = \frac{\{x \in F_{0}L_{n} : dx \in F_{-r}L_{n-1}\}}{\{x \in F_{-1}L_{n} : dx \in F_{-r}L_{n-1}\} + \{x \in F_{0}L_{n} : x = dy, y \in F_{r-1}L_{n+1}\}} = \frac{\{x \in L_{n} : dx \in F_{-r}L_{n-1}\}}{\{x \in ([L,L])_{n} : dx \in F_{-r}L_{n-1}\} + \{x \in L_{n} : x = dy, y \in L_{n+1}\}}.$$

Таким образом, можно отождествить $E^r_{0,n}$ со множеством неразложимых элементов L, не являющихся циклами, и дифференциал каждого из которых лежит в $F_{-r}L$, то есть содержит суммы скобок от неразложимых элементов длины не менее r+1. Положим $L^{[n]}=F^{-n+1}L/F^{-n}L$, то есть это элементы, представимые в виде суммы вложенных скобок длины в точности n. Далее, из (4) определим $E^r_{-r,n+r-1}$:

$$E_{-r,n+r-1}^{r} = \frac{\{x \in F_{-r}L_{n-1} : dx \in F_{-2r}L_{n-2}\}}{\{x \in F_{-r-1}L_{n-1} : dx \in F_{-2r}L_{n-2}\} + \{x \in F_{-r}L_{n-1} : x = dy, y \in F_{-1}L_{n}\}} = \{x \in L_{n-1}^{[r+1]}, dx \in F_{-2r}L_{n-2}, x \neq dy, y \in ([L,L])_{n}\}.$$

Дифференциал d_r есть отображение, индуцированное d на листе E^r . Если x — неразложимый элемент из $E^r_{0,n}$, то

$$dx = x_{r+1} + x_{r+2} + x_{r+3} + \dots$$

где x_i есть сумма скобок от неразложимых элементов длины i. Элемент dx будет лежать в $\{x \in F_{-r}L_{n-1} : dx \in F_{-2r}L_{n-2}\}$, но после взятия фактора в определении $E^r_{-r,n+r-1}$ компоненты x_{r+2}, x_{r+3}, \ldots обратятся в ноль. Таким образом, dx есть образ компоненты x_{r+1} в $E^r_{-r,n+r-1}$, то есть сумма всех скобок длины ровно r+1 от неразложимых элементов, входящих в dx. Иными словами, это в точности $d^{r+1}(x)$.

Теперь определим следующие отображения. Для каждого $r\geqslant 1$ рассмотрим композицию $\eta^r_{p,q}$ канонических проекций (напомним, что мы работаем над полем)

$$Z_{p,q}^{1}/(Z_{p-1,q+1}^{r-1}+B_{p,q}^{0}) \to Z_{p,q}^{r}/(Z_{p-1,q+1}^{r-1}+B_{p,q}^{0}) \to Z_{p,q}^{r}/(Z_{p-1,q+1}^{r-1}+B_{p,q}^{r-1}) = E_{p,q}^{r}/(Z_{p-1,q+1}^{r-1}+B_{p,q}^{r-1}) = E_{p,q}^{r}/(Z_{p-1,q+1}^{r-1}+B_{p,q}^{r-1}+B_{p,q}^{r-1}) = E_{p,q}^{r}/(Z_{p-1,q+1}^{r-1}+B_{p,q}^{r-1}+B_{p,q}^{r-1}) = E_{p,q}^{r}/(Z_{p-1,q+1}^{r-1}+B_{p,q}$$

Мы определим сначала d'_r , а затем \overline{d}_r так, чтобы замкнуть по коммутативности диаграмму

где стрелки наверх есть проекции. Представив $Z_{p,q}^1/(Z_{p-1,q+1}^{r-1}+B_{p,q}^0)$ как прямую сумму $E_{p,q}^r \oplus \ker \eta_{p,q}^r$, мы можем определить d_r' как $d_r'(e+m)=d_r(e)$, где $e\in E_{p,q}^r$, $m\in \ker \eta_{p,q}^r$. Отображение d_r' опускается до отображения факторпространств \overline{d}_r . Ядро отображения $Z_{p,q}^1/(Z_{p-1,q+1}^{r-1}+B_{p,q}^0)\to E_{p,q}^1$ содержится полностью в слагаемом $\ker \eta_{p,q}^r$, так что \overline{d}_r действует по правилу $\overline{d}_r(e+m)=d_r(e)$, где $e\in E_{p,q}^r$, а m лежит в факторпространстве от $\ker \eta_{p,q}^r$ (в нашем случае (p,q)=(0,n); всякий представитель класса m из L после взятия от него d будет иметь нулевую

компоненту d^r), то есть $\overline{d}_r(\overline{x})$ есть сумма всех вложенных скобок длины ровно r+1, входящих в dx, где x есть представитель цикла \overline{x} .

Отображение $\overline{\Delta}_{r+1}$ задаётся на элементах степени n композицией

$$H_nQL \stackrel{=}{\longrightarrow} E^1_{0,n} \stackrel{\overline{d}_r}{\longrightarrow} E^1_{-r,n+r-1} \longrightarrow F(HQL) \longrightarrow T(HQL) \longrightarrow (HQL)^{\otimes r+1}$$

где F(HQL) вкладывается в T(HQL) как подалгебра примитивных элементов. В тензорной алгебре скобка Ли становится градуированным коммутатором. Итоговые отображения Δ_r определяются из коммутативности диаграммы

$$HQL \xrightarrow{\overline{\Delta}_r} (HQL)^{\otimes r}$$

$$\downarrow s \downarrow \qquad \qquad \downarrow s^{\otimes r}$$

$$sHQL \xrightarrow{\Delta_r} (sHQL)^{\otimes r}$$

откуда мы получаем формулу для Δ_r , заявленную в теореме, причём формула для [sa,sb] получается из формулы для обычного градуированного коммутатора $a\otimes b-(-1)^{\deg a \deg b}b\otimes a$ после применения правила знаков Кошуля.

Осталось проверить выполнение тождеств A_{∞} -коалгебры. Продолжим каждую компоненту d^r как деривацию на всю алгебру L (до этого мы воспринимали d^r как лишь определённые на неразложимых элементах). В таком случае тождество Сташеффа, переписанное для отображений $\overline{\Delta}_s$ как

$$\sum_{r+s+t=n} (\mathrm{id}^{\otimes r} \otimes \overline{\Delta}_s \otimes \mathrm{id}^{\otimes t}) \overline{\Delta}_{r+1+t} = 0$$

будет следовать из того, что (n-1)-ая компонента отображения $d \circ d = 0$ равна нулю, в чём можно убедиться непосредственным, но громоздким вычислением. К примеру, приведём вычисление для компоненты $d \circ d$, повышающей длину скобок на два. Зафиксируем произвольный неразложимый элемент x, из соображений линейности достаточно считать, что $d^2(x)$ содержит лишь одно слагаемое, которое обозначим [a,b]. Компонента $d \circ d$, повышающая длину скобок на два, есть композиция $d^2 \circ d^2$. Также в силу линейности нашего вычисления мы для простоты будем считать, что $d^2(a) = [a_1,a_2], d^2(b) = [b_1,b_2]$. Для краткости обозначим в вычислении степень элемента y как |y|. Тогда имеем

$$\begin{split} d^2(d^2(x)) &= d^2([a,b]) = [d^2(a),b] + (-1)^{|a|}[a,d^2(b)] = [[a_1,a_2],b] + (-1)^{|a|}[a,[b_1,b_2]] = \\ &= [a_1 \otimes a_2 - (-1)^{|a_1||a_2|}a_2 \otimes a_1,b] + (-1)^{|a|}[a,b_1 \otimes b_2 - (-1)^{|b_1||b_2|}b_2 \otimes b_1] = \\ &= a_1 \otimes a_2 \otimes b - (-1)^{|a_1||a_2|}a_2 \otimes a_1 \otimes b - (-1)^{(|a_1|+|a_2|)|b|}b \otimes a_1 \otimes a_2 + \\ &+ (-1)^{|a|}a \otimes b_1 \otimes b_2 - (-1)^{|a|+|b_1||b_2|}a \otimes b_2 \otimes b_1 - (-1)^{|a|(|b_1|+|b_2|+1)}b_1 \otimes b_2 \otimes a + \\ &+ (-1)^{|a|(|b_1|+|b_2|+1)+|b_1||b_2|}b_2 \otimes b_1 \otimes a. \end{split}$$

С другой стороны, вычислим соответствующее тождество Сташеффа (для отображений $\overline{\Delta}_k$, там, где нет знаков). Для удобства опустим черты над элементами

(означающие, что они являются классами гомологий).

$$(\mathrm{id} \otimes \overline{\Delta}_2 + \overline{\Delta}_2 \otimes \mathrm{id}) \overline{\Delta}_2(x) = (\mathrm{id} \otimes \overline{\Delta}_2 + \overline{\Delta}_2 \otimes \mathrm{id})([a, b]) =$$

$$= (-1)^{|a|} a \otimes (b_1 \otimes b_2 - (-1)^{|b_1||b_2|} b_2 \otimes b_1) -$$

$$-(-1)^{|a|(|b|+1)} b \otimes (a_1 \otimes a_2 - (-1)^{|a_1||a_2|} a_2 \otimes a_1) + (a_1 \otimes a_2 - (-1)^{|a_1||a_2|} a_2 \otimes a_1) \otimes b -$$

$$-(-1)^{|a||b|} (b_1 \otimes b_2 - (-1)^{|b_1||b_2|} b_1 \otimes b_2) \otimes a = (-1)^{|a|} a \otimes b_1 \otimes b_2 -$$

$$-(-1)^{|a|+|b_1||b_2|} a \otimes b_2 \otimes b_1 - (-1)^{|a|(|b|+1)} b \otimes a_1 \otimes a_2 +$$

$$+(-1)^{|a_1||a_2|+|a||b|+|b|} b \otimes a_2 \otimes a_1 + a_1 \otimes a_2 \otimes b - (-1)^{|a_1||a_2|} a_2 \otimes a_1 \otimes b -$$

$$-(-1)^{|a||b|} b_1 \otimes b_2 \otimes a + (-1)^{|a||b|+|b_1||b_2|} b_2 \otimes b_1 \otimes a.$$

Результаты двух вычислений совпадают, так как $|a|=|a_1|+|a_2|+1$, $|b|=|b_1|+|b_2|+1$.

Конструкция A_{∞} -структуры тем самым завершена.

Для нас наибольший интерес это предложение представляет в топологическом контексте. Предположим, что X—односвязное пространство конечного \mathbb{Q} -типа, и L_X — его минимальная модель Квиллена. В таком случае, как известно, существует изоморфизм коалгебр $sQL_X\cong \tilde{H}_*(X;\mathbb{Q})$ (это можно доказать, исходя из рассмотрения спектральной последовательности для $\mathcal{C}(L_X)$, фильтрованного по второй компоненте бистепени, см. [2]), причём стандартное коумножение на гомологиях совпадает с коумножением, построенным методом теоремы 3. Индуцируем посредством этого строгого изоморфизма A_∞ -коалгебраическую структуру на $\tilde{H}_*(X;\mathbb{Q})$, то есть дополним коумножение в когомологиях до A_∞ -структуры, пользуясь теоремой 3. Таким образом, мы можем доказать следующее утверждение.

Следствие 2. Пусть X — односвязное пространство с рациональными гомологиями конечного типа. Тогда на $\tilde{H}_*(X;\mathbb{Q})$ существует структура минимальной A_{∞} -коалгебры $\Delta = (\Delta_2, \Delta_3, \dots)$, где Δ_2 есть стандартное гомологическое коумножение, или, двойственным образом, структура минимальной A_{∞} -алгебры на $\tilde{H}^*(X;\mathbb{Q})$, продолжающая его структуру кольца, причём Δ_n соответствует n-ой компоненте в разложении дифференциала L_X в смысле теоремы 3. Наличие (отсутствие) соотношений длины k в $\pi_*(\Omega X) \otimes \mathbb{Q}$ (или в $H_*(\Omega X;\mathbb{Q})$) равносильно нетривиальности (соотв. тривиальности) соответствующей операции m_k на $\tilde{H}^*(X;\mathbb{Q})$.

Доказательство. Предположим, что в $\pi_*(\Omega X) \otimes \mathbb{Q}$ имеется соотношение, содержащее слагаемые, являющиеся вложенными скобками от неразложимых элементов длины n, причём это соотношение не является следствием других соотношений (не входит в идеал, порождаемый другими соотношениями). Тогда задающий это соотношение элемент модели Квиллена L_X является границей от неразложимого элемента x, а потому компонента d^n дифференциала d не равна нулю. По теореме это даёт нетривиальное Δ_n .

Наоборот, если Δ_n не тождественно равно нулю, то d^n не ноль на неком неразложимом элементе, поэтому в $\pi_*(\Omega X) \otimes \mathbb{Q}$ имеется соотношение, содержащее

скобки длины n. Так как это соотношение происходит из границы неразложимого элемента, оно не является следствием соотношений с меньшей максимальной длиной скобок.

Пример. Мы приведём здесь пример из торической топологии. Для натурального m обозначим $[m] = \{1, 2, \ldots, m\}$. Подмножество $\mathcal K$ во множестве подмножеств [m] называется симплициальным комплексом, если из того факта, что $I \in \mathcal K$, следует, что всякое $L \subseteq I$ также лежит в $\mathcal K$. Элементы $\mathcal K$ называются его симплексами, а элементы $1, 2, \ldots, m$, отождествляемые с одноэлементными симплексами, называют его вершинами. Пара вершин i, j соединена ребром, если $\{i, j\} \in \mathcal K$. Комплекс $\mathcal K$ называется флаговым, если для каждое множество вершин в [m], попарно соединённых рёбрами, является симплексом в $\mathcal K$. Каждому симплициальному комплексу $\mathcal K$ можно сопоставить его флагизацию, получаемую добавлением симплексов для каждого множества попарно соединённых вершин, если они уже не образовывали симплекс в $\mathcal K$.

Пусть $I \subseteq [m]$, а (X, A) — топологическая пара. Обозначим

$$(X,A)^I = X_1 \times \cdots \times X_m,$$

где $X_k = X$, если $k \in I$, и $X_k = A$ иначе. В таком случае момент-угол комплексом, соответствующим симплициальному комплексу \mathcal{K} , называют топологическое пространство

$$\mathcal{Z}_{\mathcal{K}} := \bigcup_{I \in \mathcal{K}} (D^2, S^1)^I.$$

Объединение здесь берётся внутри $(D^2)^m$. Для основных определений, касающихся момент-угол комплексов и их гомотопических свойств мы отсылаем читателя к [6, Главы 4, 8].

В работах Денама-Сучю [7] и Грбич-Линтон [9] доказано, что момент-угол комплекс $\mathcal{Z}_{\mathcal{K}}$ имеет в $H^{8}(\mathcal{Z}_{\mathcal{K}};\mathbb{Q})$ нетривиальное произведение Масси классов из $H^{3}(\mathcal{Z}_{\mathcal{K}};\mathbb{Q})$ тогда и только тогда, когда симплициальный комплекс \mathcal{K} содержит в качестве подграфа один из восьми «препятствующих» графов, указанных на рис. 1.

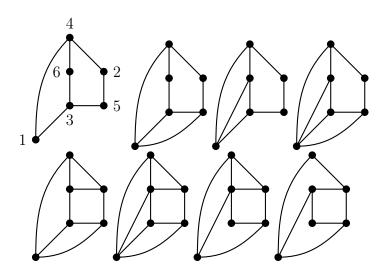


Рис. 1. Графы препятствий

В работе [16] был произведено вычисление соотношений в алгебрах Понтрягина $\mathcal{Z}_{\mathcal{K}}$, соответствующим флагизациям всех восьми графов, найдены все соотношения в степенях $\leqslant 6$ (среди которых есть и кубические, что подтверждало неформальность пространств), однако вопрос об отсутствии других соотношений оставался открытым. При помощи результатов, описанных выше, этот вопрос можно разрешить следующим образом. Из формулы Хохстера для подсчёта когомологий [10], применённой к результату Бухштабера—Панова [6, Теорема 4.5.4] следует, что для всех восьми $\mathcal{Z}_{\mathcal{K}}$ ненулевые приведённые рациональные когомологии могут быть ненулевыми только в степенях $3 \leqslant k \leqslant 8$, поэтому для всякой A_{∞} -структуры на $H^*(\mathcal{Z}_{\mathcal{K}};\mathbb{Q})$ по причинам градуировки справедливо $m_i = 0, i \geqslant 4$, а m_3 может быть нетривиально только на тройке классов из $H^3(\mathcal{Z}_{\mathcal{K}};\mathbb{Q})$ (где в образе оно имеет, с точностью до элементов из образа m_2 , представитель нетривиального произведения Масси). По следствию 2, из тривиальности $m_i, i \geqslant 4$ следует, что соотношений длины больше, чем три, не существует. Так как m_3 может быть нетривиально только на тройке классов степеней 3, а соответствующие при изоморфизме элементы QL_X будут иметь степени 2, то мы имеем, что соотношения длины три могут быть только в степени $2 \cdot 3 = 6$, а они уже посчитаны. Аналогично, чтобы имелись соотношения длины 2 в степенях больше, чем 6, должно быть нетривиальное произведение в когомологиях степени больше, чем 6+1+1=8. Но когомологии этих комплексов, начиная со степени 9, тривиальны. Таким образом, полностью завершено вычисление алгебр Понтрягина этих пространств, к примеру, для флагизации ${\cal K}$ шестого по счёту графа на рис. 1 (того, где больше всего рёбер), мы получаем факторалгебру

$$H_*(\Omega \mathcal{Z}_{\mathcal{K}}; \mathbb{Q}) \cong T(a_{12}, a_{23}, a_{34}, a_{45}, a_{56}, b_{132}, b_{243}, b_{354}, b_{465}) /$$

$$\langle [a_{23}, a_{56}], [a_{12}, a_{56}], [a_{12}, a_{45}], [a_{23}, b_{465}] + [a_{56}, b_{243}], [a_{12}, b_{465}], [a_{56}, b_{132}],$$

$$[a_{12}, b_{354}] + [a_{45}, b_{132}], [a_{12}, [a_{34}, a_{56}]] + [b_{132}, b_{465}] \rangle.$$

Такой метод вычисления в принципе применим для всякого односвязного пространства, если известны его рациональные когомологии и имеющиеся соотношения в рациональной алгебре Понтрягина каким-либо образом удалось вычислить. Наши результаты позволяют доказывать лишь отсутствие или, когда удалось установить нетривиальность какого-либо m_i , наличие соотношений определённой степени, но не говорят ничего о виде такого соотношения.

Схожие результаты можно также получить в контексте минимальных моделей пространства, соотношений в гомологиях и коформальности. Для связного пространства X существует минимальная алгебра M_X над $\mathbb Q$ и квазиизоморфизм $M_X \to A_{PL}X$, где $A_{PL}X$ — PL формы де Рама на X. Если X — нильпотентное пространство с рациональными гомологиями конечного типа, то M_X имеет конечный тип, и определена минимальная коалгебраическая модель C_X как двойственная коалгебра к M_X .

Заметим, что в случае симметрической коалгебры S(V) всякий дифференциал d на ней также допускает разложение $\operatorname{pr}_V \circ d$ в сумму d^i , где компонента с номером i действует как $\operatorname{pr}_V \circ d$ на симметрических произведениях ровно i примитивных элементов, и равна нулю на всех прочих элементах. Здесь pr_V есть проекция $S(V) \to V$.

В этом новом контексте аналогом теоремы 3 служит следующее утверждение.

Теорема 4. Пусть C — минимальная DG-коалгебра, без учёта дифференциала совпадающая c симметрической коалгеброй S(V) на DG-векторном пространстве V. Тогда на $s^{-1}HPC$ существует структура минимальной L_{∞} -алгебры $\ell = (\ell_2, \ell_3, \ldots)$, со следующим свойством. Если

$$d^n\left(\sum_{j} v_1^{(j)} \vee \dots \vee v_n^{(j)}\right) = v,$$

то для $\overline{\ell}_n = s \circ \ell_n$ справедливо

$$\bar{\ell}_n \left(\sum_j \bar{v}_1^{(j)} \vee \dots \vee \bar{v}_n^{(j)} \right) = \bar{v},$$

 $z \partial e \ \bar{x} \ ecmb \ uuкл \ c \ npedcmasumerem \ x.$

Доказательство. Рассмотрим примитивную фильтрацию на C, определяемую индуктивно следующим образом:

- (1) $F_n(C) = 0, n < 0;$
- (2) $F_0(C) = k$;
- (3) $F_{n+1}(C) = \operatorname{Im}(i_n \oplus (\vee \circ (i_{PC} \otimes i_n)) : F_n(C) \oplus (PC \otimes F_n(C)) \to C)$, где i_{PC} вложение $PC \subseteq C$, i_n вложение $F_n(C) \subseteq C$, \vee симметрическое умножение, определённое на S(V).

Иными словами, элементы $F^n(C)$ — это элементы C, представимые в виде суммы произведений не более n примитивных элементов. Она порождает спектральную последовательность коалгебр с $E^0(C) = S(V)$, $E^1(C) = S(HV) = S(HPC)$, $E^1_{1,n} = H_{n+1}PC$.

Как и в теореме 3, мы вычислим сначала дифференциалы d_r спектральной последовательности. В данном случае фильтрация возрастающая, так что

$$E^{r}_{p,q} = \frac{\{x \in F_{p}C_{p+q} : dx \in F_{p-r}C_{p+q-1}\}}{\{x \in F_{p-1}C_{p+q} : dx \in F_{p-r}C_{p+q-1}\} + \{x \in F_{p}C_{p+q} : x = dy, y \in F_{p+r-1}C_{p+q+1}\}}.$$

В аналогии с 3, вычислим $E^r_{1,n+r-1}$ и $E^r_{r+1,n}$ для всех $r\geqslant 1, n\geqslant 0.$ Из определения $E^r_{p,q}$ следует, что

$$E_{1,n+r-1}^r = \frac{\{x \in F_1C_{n+r} : dx \in F_{1-r}C_{n+r-1}\}}{\{x \in F_0C_{n+r} : dx \in F_{1-r}C_{n+r-1}\} + \{x \in F_1C_{n+r} : x = dy, y \in F_rC_{n+r+1}\}} = \{x \in PC_{n+r} : dx \in F_{1-r}C_{n+r-1}, x \neq dy, y \in F_rC_{n+r+1}\}$$

а также, обозначая $C^{[n]} = F_n C/F_{n-1} C$ — элементы C, представимые в виде произведения n примитивных элементов, но не n-1 примитивных элементов, получим

$$E_{r+1,n}^{r} = \frac{\{x \in F_{r+1}C_{n+r+1} : dx \in F_{1}C_{n+r}\}}{\{x \in F_{r}C_{n+r+1} : dx \in F_{1}C_{n+r}\} + \{x \in F_{r+1}C_{n+r+1} : x = dy, y \in F_{2r}C_{n+r+2}\}} = \{x \in C_{n+r+1}^{[r+1]} : dx \in PC_{n+r}, x \neq dy, y \in F_{2r}C_{n+r+2}\}.$$

Дифференциал спектральной последовательности отображает $E^r_{r+1,n}$ в $E^r_{1,n+r-1}$. Он индуцирован на листе E^r дифференциалом d на C. Если x — элемент из $E^r_{r+1,n}$ (которое посредством вычисления выше отождествлено с некоторым множеством элементов C), то dx есть примитивный элемент, лежащий в $E^r_{1,n+r-1}$ (во множестве, с ним отождествляемом).

Определим теперь отображения на первом листе. Для каждого $r\geqslant 1$ зададим, как и ранее, композицию проекций $\eta^r_{n,q}$

$$Z_{p,q}^1/(Z_{p-1,q+1}^{r-1}+B_{p,q}^0) \to Z_{p,q}^r/(Z_{p-1,q+1}^{r-1}+B_{p,q}^0) \to Z_{p,q}^r/(Z_{p-1,q+1}^{r-1}+B_{p,q}^{r-1}) = E_{p,q}^r.$$

и отображения d'_{r+1} , \overline{d}_{r+1} в точности так же, как в диаграмме 5 (с заменой $E^1_{0,n}$ на $E^1_{r+1,n}$, $E^1_{-r,n+r-1}$ на $E^r_{1,n+r-1}$ и т.д.). Как пояснено в доказательстве теоремы 3, в таком случае \overline{d}_r задаётся как $\overline{d}_{r+1}(e+m)=d_{r+1}(e)$, где e лежит в $E^r_{r+1,n}$, а m — в факторе пространства ker $\eta^r_{r+1,n}$ (всякий представитель класса m после взятия от него d будет иметь нулевую компоненту d^{r+1}), иными словами, $\overline{d}_r(\overline{x})$ есть образ компоненты $d^r(x)$ в E^1 , где x есть представитель цикла \overline{x} .

Отображение $\bar{\ell}_r$ задаётся композицией

$$(HPC)_{n+r+1}^{\otimes (r+1)} \stackrel{\pi}{\longrightarrow} S(HPC) \longrightarrow E_{r+1,n}^1 \stackrel{\overline{d}_r}{\longrightarrow} E_{1,n+r-1}^1 \stackrel{=}{\longrightarrow} H_{n+r}PC$$

Под $(HPC)_{n+r+1}^{\otimes (r+1)}$ понимаются все элементы степени n+r+1 в $(HPC)^{\otimes (r+1)}$, π есть проекция $T(V) \to S(V)$, стрелка $S(HPC) \to E_{r+1,n}^1$ есть каноническая проекция. Отображения \overline{d}_r уже вычислены, поэтому для $\overline{\ell}_i$ справедлива формула для \overline{d}_i

$$\bar{\ell}_n \left(\sum_j \bar{v}_1^{(j)} \vee \dots \vee \bar{v}_n^{(j)} \right) = \bar{v},$$

если d отображает сумму $\sum_j \bar{v}^{(j)} \lor \cdots \lor v_n^{(j)}$ в v. Для удобства черты над элементами, означающие, что они есть классы гомологий, далее будем опускать.

Так как π симметрична, то $\bar{\ell}_i$ также удовлетворяют свойству симметрии

$$\overline{\ell}_i(v_{\tau(1)} \otimes \cdots \otimes v_{\tau(n)}) = \varepsilon(\tau)\overline{\ell}_i(v_1 \otimes \cdots \otimes v_n).$$

Для доказательства обобщённых тождеств Якоби воспользуемся леммой 1. Положив в ней $f = \mathbf{id} : C \to C = S(V)$, мы заключим следующее. Если понимать дифференциал d на C как продолжение его ограничения $d|_V$ как кодеривации на всю C, то по этой же лемме $\operatorname{pr}_{V^{\vee n}} \circ d$ можно также задать отображением $\vee \circ (\sum_{i+j=n} (\operatorname{pr}_V \circ d^i|_V) \otimes \operatorname{id}^{\otimes j}) \circ \Delta_C|_{V^{\vee n}}$, где pr_V — проекция $S(V) \to V$. Так как $d \circ d = 0$, то

$$0 = d^n \circ (\operatorname{pr}_{V^{\vee n}} \circ d) = d \circ \vee \circ \left(\sum_{i+j=n} (\operatorname{pr}_V \circ d^i|_V) \otimes \operatorname{id}^{\otimes j} \right) \circ \Delta_C|_{V^{\vee n}}.$$

Применим отображение в правой части к элементу $v_1 \vee \cdots \vee v_n$, где $v_i \in V$. Воспользуемся формулой для коумножения (2), а также тем, что $\overline{\ell}_i$ действуют, как компоненты d^i , как обсуждалось выше. Получим равенство

$$\sum_{i+j=n+1} \sum_{\tau \in Sh(i,n-i)} \varepsilon(\tau) \overline{\ell}_j(\overline{\ell}_i(v_{\tau(1)} \otimes \cdots \otimes v_{\tau(i)}) \otimes v_{\tau(i+1)} \otimes \cdots \otimes v_{\tau(n)}) = 0.$$

Таким образом, отображения $\ell_n = (s^{-1})^{\otimes n} \circ \overline{\ell}_n \circ s$ удовлетворяют тождествам Якоби по предложению 2, а потому задают L_{∞} -структуру.

Пусть C_X — минимальная коалгебраическая модель односвязного пространства с рациональными гомологиями конечного типа. Известный результат говорит, что имеется изоморфизм алгебр Ли $s^{-1}PC \cong \pi_*(\Omega X) \otimes \mathbb{Q}$ (это доказывается рассмотрением спектральной последовательности для $\mathcal{L}(C_X)$, фильтрованного по второй компоненте бистепени, см. [2]). Так же, как и в случае с теоремой 3 аналог следствия 2 для L_{∞} -структуры.

Следствие 3. Пусть X — односвязное пространство с рациональными гомологиями конечного типа. Тогда на $\pi_*(\Omega X) \otimes \mathbb{Q}$ существует структура минимальной L_{∞} -алгебры $\ell = (\ell_2, \ell_3, \dots)$, где ℓ_2 соответствует произведению Самельсона. Отображения ℓ_n связаны с компонентами d^n разложения дифференциала на C_X , как в теореме 4. Наличие (отсутствие) соотношений определённой длины в $H_*(X;\mathbb{Q})$ равносильно нетривиальности (соотв. тривиальности) соответствующей операции ℓ_n на $\pi_*(\Omega X) \otimes \mathbb{Q}$.

Замечание. Результаты этого раздела можно также распространить на неодносвязный случай. Пусть X — нильпотентное пространство с рациональными гомологиями конечного типа. Как обсуждалось, для такого X существует модель C_X , однако нет гарантии существования модели Квиллена L_X . В таком случае PC_X изоморфна

(6)
$$\mathfrak{l}(\pi_1(X) \otimes \mathbb{Q}) \oplus \bigoplus_{i \geqslant 2} (\pi_i(X) \otimes \mathbb{Q}),$$

где $\mathfrak{l}(\pi_1(X)\otimes\mathbb{Q})$ — алгебра Ли пополнения Мальцева ([4, Приложение А3]). В случае существования L_X это совпадает с sHL_X . Теоремы 3 и 4 дают A_∞ -структуру на $\tilde{H}_*(X;\mathbb{Q})$ (когда существует L_X) и L_∞ -структуру на (6) соответственно.

3.2. **Критерии формальности.** Как продолжение идей Каледина, мы найдём полезным формулировку результатов, не включающую присоединение формальной переменной.

Комплекс $\operatorname{Coder}(\overline{T}sA)$) снабжён фильтрацией, где $F^k\operatorname{Coder}(\overline{T}sA)$) есть все кодеривации, равные нулю вне $\bigoplus_{j\geqslant k}(sA)^{\otimes j}$.

Пусть (A,m_A) — минимальная плоская A_∞ R-алгебра, и $m_A=m_2+m_3+\dots$ — разложение m_A как кодеривации, и пусть

$$\tilde{m}_A = m_3 + 2m_4 + 3m_5 + \dots$$

Кодеривация \tilde{m}_A является коциклом относительно дифференциала $[m_A,\cdot]$, а, значит, определяет класс в $H^1(F^1\operatorname{Coder}(\overline{T}sA))$, который мы обозначим \tilde{K}_A . Аналогично мы определим усечённый класс $\tilde{K}_{A,n}$ в $H^1(F^1\operatorname{Coder}(\overline{T}s\tilde{A})/F^{n+1})$, задаваемый представителем

$$\tilde{m}_{A,n} = m_3 + 2m_4 + \dots + (n-1)m_{n+1},$$

Следующее утверждение показывает, что \tilde{K}_A и $\tilde{K}_{A,n}$ непосредственно связаны с классическими классами Каледина $K_{\tilde{A}},\,K_{\tilde{A}/h^{n+1}}.$

Лемма 2. В указанных выше условиях класс \tilde{K}_A ($\tilde{K}_{A,n}$) обращается в ноль тогда и только тогда, когда $K_{\tilde{A}}$ (cooms. $K_{\tilde{A}/h^{n+1}}$) обращается в ноль.

Доказательство. Условие обращения в ноль класса Каледина эквивалентно существованию элемента t степени 0 в комплексе Хохшильда \tilde{A} такого, что $[m_A, t] = \partial_h m$. Запишем t в разложении по степеням h:

$$t = t_1 + t_2 h + t_3 h^2 + \dots$$

Тогда условие на t преобразуется как

$$\sum_{j\geqslant 1} \sum_{i\geqslant 2} [m_i, t_j] h^{i+j-3} = \sum_{j\geqslant 3} (j-2) m_j h^{j-3}$$

или, что то же самое,

$$\sum_{n\geqslant 0} \sum_{i\geqslant 2} [m_i, t_{n+3-i}] h^n = \sum_{n\geqslant 0} (n+1) m_{n+3} h^n,$$

откуда приравниванием слагаемых при равных степенях h и сдвигом индекса n получим

(7)
$$\sum_{i>2} [m_i, t_{n-i}] = (n-2)m_n, \quad n \geqslant 3,$$

где можно считать, что t_j имеет арность j (т.е. равно нулю вне $\tilde{A}^{\otimes j}$). С другой стороны, условие обращения в ноль класса \tilde{K}_A означает существование кодеривации $t=t_1+t_2+\ldots$ степени 0 такой, что $[m_A,t]=\tilde{m}_A$, где t_j — компонента арности j. Расписывая это условие, получаем равенство, идентичное (7). Утверждение про усечённые классы доказывается совершенно аналогично.

Заметим, что \tilde{K}_A рассматривается как класс когомологий в $F^1\operatorname{Coder}(\overline{T}sA)$. Его представитель \tilde{m}_A , конечно, задаёт класс в $H^1(\operatorname{Coder}(\overline{T}sA))$, но он всегда равен нулю, как мы увидим далее.

Определение 9. Пусть заданы A_{∞} R-алгебры $(A, m_A), (B, m_B)$ и A_{∞} -морфизм $f: A \to B$. Определим α_f равенством

$$\alpha_f(a) = (\deg a + 1) f_1(a),$$

где f_1 есть первая компонента морфизма f. Символом α_A будем обозначать α_{id_A} .

Если алгебры минимальны, то это также обеспечит согласие α_f со структурами цепных комплексов на A и B. Важным свойством α_A является следующее утверждение.

Лемма 3. Пусть β - кодеривация на $\overline{T}sA$, имеющая только компоненту арности p. Тогда справедливо

$$[\beta, \alpha_A] = (p - \deg \beta - 1)\beta,$$

где $\deg \beta$ — степень β как однородного отображения. Причём в $\operatorname{Coder}(\overline{T}sA)$ выполнено $[m_A, \alpha_A] = \tilde{m}_A$.

Доказательство. Первое следует непосредственно из определения градуированного коммутатора $[\cdot,\cdot]$. Второе следует из первого и того, что

$$[m_A, \alpha_A] = \sum_{i \geqslant 2} [m_i, \alpha_A] = \sum_{i \geqslant 2} (i-2)m_i = \tilde{m}_A.$$

Как следствие, класс $[\tilde{m}_A]$ равен нулю в $H^1(\operatorname{Coder}(\overline{T}sA))$. С A_{∞} -морфизмом $f:A\to B$ мы свяжем комплекс

$$\operatorname{Coder}_{f}(\mathcal{B}A, \mathcal{B}B) = \{ \alpha \in \operatorname{Hom}_{R}^{*}(\mathcal{B}A, \mathcal{B}B) : \Delta \alpha = (\alpha \otimes f + f \otimes \alpha) \Delta \}$$

с дифференциалом $d\alpha = m_B\alpha - (-1)^{\deg\alpha}\alpha m_A$. Он как и комплекс Хохшильда снабжён фильтрацией, где $F^p\operatorname{Coder}_f(\mathcal{B}A,\mathcal{B}B)$ есть морфизмы с нулевыми компонентами арности $\leqslant p$. Нетрудно понять, что если $f:A\to B, g:B\to C-A_\infty$ -морфизмы, то они индуцируют морфизмы фильтрованных комплексов

$$f^*: \operatorname{Coder}_f(\mathcal{B}B, \mathcal{B}C) \to \operatorname{Coder}_{gf}(\mathcal{B}A, \mathcal{B}C) \leftarrow \operatorname{Coder}_g(\mathcal{B}A, \mathcal{B}B): g_*.$$

С комплексом $\operatorname{Coder}_f(\mathcal{B}A, \mathcal{B}B)$ мы свяжем спектральную последовательность $E_*^{*,*}(A, B, f)$.

Далее мы будем считать, что R = k — поле характеристики ноль.

Пемма 4. Если $f: A \to B, g: B \to C$ — квазиизоморфизмы A_{∞} -алгебр, то индуцированные морфизмы g_* , f^* спектральных последовательностей являются изоморфизмами, начиная с первых их листов.

Доказательство. По теореме Кюннета

$$E_1^{p,q}(A, B, f) \cong \operatorname{Hom}_k^{p+q}(\mathcal{B}HA, \mathcal{B}HB)$$

и аналогично

$$E_1^{p,q}(A, C, gf) \cong \operatorname{Hom}_k^{p+q}(\mathcal{B}HA, \mathcal{B}HC),$$

откуда сразу следует утверждение леммы.

Для минимальных алгебр мы можем рассматривать α_f как элемент $E_1^{1,-1}(A,B,f)\cong \operatorname{Hom}_k^0(A,B)$.

Лемма 5. Обозначим $d_1 - \partial u \phi \phi$ еренциал на $E_1^{*,*}(A,B,f)$. Справедливо, что $d_1(\alpha_f) = 0$.

Доказательство. Значение $d_1(\alpha_f)$ есть не что иное, как компонента арности 2 элемента $m_B\alpha_f - \alpha_f m_A$, где α_f воспринимается как кодеривация. Соответствующая компонента отображения $\alpha_f m_A$ имеет вид

$$a_1 \otimes a_2 \mapsto (\deg a_1 + \deg a_2 + 2) f_1((m_A)_2(a_1 \otimes a_2)),$$

а компонента отображения $m_B \alpha_f$ имеет вид

$$a_1 \otimes a_2 \mapsto (m_B)_2((\deg a_1 + 1)f_1(a_1) \otimes a_2) + (m_B)_2(a_1 \otimes (\deg a_2 + 1)f_1(a_2)),$$
 что есть то же самое.

В частности, α_f определяет элемент в $E_2^{1,-1}(A,B,f)$. Важность класса α_f объясняется следующим утверждением.

Предложение 3. Усечённый класс $\tilde{K}_{A,n}$ равен нулю тогда и только тогда, когда $d_r(\alpha_A) = 0$ при $r = 2, \ldots, n$. Аналогично $\tilde{K}_A = 0 \Leftrightarrow \alpha_f$ — перманентный коцикл в спектральной последовательности.

Для доказательства предложения нам понадобится следующая техническая лемма, употребляемая в [5, Предл. 4.5] без дополнительного обоснования.

Лемма 6. Для минимальной A_{∞} R-алгебры $K_{A,n}=0$ тогда и только тогда, когда существует A_{∞} -изоморфизм $(A,m_A) \to (A,m_A')$, где $m_2'=m_2$, и $m_i'=0$ при $3 \le i \le n+1$.

Доказательство. То, что первое утверждение есть следствие второго, следует из инвариантности класса \tilde{K}_A . Доказательство обратной импликации проводим индукцией по n. База n=1 тривиальна. Если $\tilde{K}_{A,n}=0$, то и $\tilde{K}_{A,n-1}=0$, и по предположению индукции мы можем положить, что $m_A=m_2+m_{n+1}+m_{n+2}+\ldots$, и потому $\tilde{m}_A=(n-1)m_{n+1}+nm_{n+2}+\ldots$ Так как \tilde{m}_A должно обращаться в ноль в арностях $\leqslant n+1$, то существует $t=t_2+t_3+\cdots\in F^1\operatorname{Coder}(\mathcal{B}A)$ такая, что $[m_A,t]=\tilde{m}_A$ в арностях $\leqslant n+1$. В арности n+1 это означает, что $[m_2,t_n]=(n-1)m_{n+1}$. Тогда $m_A'=\exp(-\frac{t_n}{n-1})m_A\exp(\frac{t_n}{n-1})$ задаёт A_∞ -структуру на A и $\exp(\frac{t_n}{n-1})$ есть A_∞ -изоморфизм $(A,m_A')\to (A,m_A)$. Как нетрудно проверить, $m_i'=m_i$ при $i\leqslant n$, и $m_{n+1}'=m_{n+1}-[m_2,\frac{t_n}{n-1}]=0$.

Доказательство предложения. Если $\tilde{K}_{A,n}=0$, то по лемме мы можем положить $m_3=\cdots=m_{n+1}=0$, и $m_A=m_2+m'$, где $m'\in F^{n+2}\operatorname{Coder}(\mathcal{B}A)$. Пусть $2\leqslant r\leqslant n$, а x — кодеривация, сосредоточенная в арности p такая, что $[m_A,x]\in F^{p+r}\operatorname{Coder}(\mathcal{B}A)$. Мы имеем $[m_2,x]=0$ и $[m_A,x]=[m',x]$, что лежит в $F^{p+r+1}\operatorname{Coder}(\mathcal{B}A)$, откуда $d_r=0$.

Докажем обратную импликацию. Из определения дифференциала d_r следует и нашего предположения $d_r(\alpha_A) = 0$, что существуют кодеривации $t_i = t_{i,2} + \cdots + t_{i,i+1}$ такие, что

$$\sum_{j=2}^{p} [m_j, t_{i,p+1-j}] = \begin{cases} 0, & 2 \leq p \leq i, \\ im_{i+2}, & p = i+1. \end{cases}$$

Полагая $m_A' = m_2' + \dots + m_n'$, где $m_i' = \sum_{j=1}^i t_{j,i}$, получим, что $[m_A, m_A']$ совпадает с \tilde{m}_A по модулю F^{n+2} , что показывает, что $\tilde{K}_{A,n} = 0$.

Таким образом, мы доказали следующее.

Теорема 5. Положим, что (A, m_A) — минимальная A_{∞} -алгебра. Следующие условия эквивалентны.

- (1) A формальна (n-формальна);
- (2) $K_A = 0$ $(K_{A,n} = 0)$;
- (3) $E_r^{*,*}(A, A)$ коммансирует на E_2 $(E_2 = \cdots = E_n);$
- (4) $d_r(\alpha_A) = 0$ das $ecex \ r \ (das \ 2 \leqslant r \leqslant n)$.

Мы теперь исследуем спектральные последовательности, связанные с не тождественными A_{∞} -морфизмами.

Пемма 7. Пусть $f:(A,m_A)\to (B,m_B)$ — морфизм минимальных A_∞ -алгебр $u\;(m_A)_i=(m_B)_i=0$ для $3\leqslant i\leqslant n+1$. Тогда для спектральной последовательности $E_r^{*,*}(A,B,f)$ справедливо $d_r=0$ для $r=2,\ldots,n$.

Доказательство. Доказательство производится по индукции. Предполагаем, что $d_2 = \cdots = d_{n-1} = 0$ и покажем, что $d_n = 0$. Элемент $x \in E_n^{p,*}$ представляется линейным отображением g арности p таким, что при продолжении его как кодеривации выполнено $m_B g - (-1)^{\deg g} g m_A \in F^{p+n} \operatorname{Coder}_f(\mathcal{B}A, \mathcal{B}B)$. Запишем $m_A = (m_A)_2 + \bar{m}_A$, где \bar{m}_A есть сумма $\sum_{i \geqslant n+2} (m_A)_i$, и аналогично для B. Тогда $(m_B)_2 g - (-1)^{\deg g} g (m_A)_2 = 0$, поэтому $m_B g - (-1)^{\deg g} g m_A = \bar{m}_B g - (-1)^{\deg g} g \bar{m}_A \in F^{p+n+1} \operatorname{Coder}_f(\mathcal{B}A, \mathcal{B}B)$, откуда $d_n(x) = 0$.

Эту лемму можно рассматривать как аналог леммы 6 для более общего класса морфизмов. Как следствие критерия формальности, мы получим следующий результат.

Предложение 4. Пусть $f:(A,m_A)\to (B,m_B)$ — морфизм минимальных A_∞ -алгебр, причём $f_*:E_2^{p,1-p}(A,A)\to E_2^{p,1-p}(A,B,f)$ инъективно для всех $p\geqslant 3$ и B формальна. Тогда A формальна.

Доказательство. Мы сразу можем считать, что $m_B=(m_B)_2$. Пусть $n\geqslant 3$ — наименьший номер такой, что $(m_A)_n\neq 0$. По лемме 7 $E_2^{*,*}(A,A)=E_{n-1}^{*,*}(A,A)$ и $E_2^{*,*}(A,B,f)=E_{n-1}^{*,*}(A,B,f)$, поэтому инъективность распространяется на (n-1)-ые листы. Тогда для каждого $2\leqslant k\leqslant n-1$ справедливо

$$f_*(d_k \alpha_A) = d_k f_*(\alpha_A) = d_k f^*(\alpha_B) = f^*(d_k \alpha_B) = 0,$$

откуда $d_k \alpha_A = 0$ при $2 \leqslant k \leqslant n-1$. Поэтому A (n-1)-формальна и тогда с точностью до A_{∞} -автоморфизма можно считать, что $(m_A)_n = 0$. Повторяя это рассуждение счётное число раз, мы приходим к утверждению предложения. \square

Данные результаты обобщаются совершенно аналогичным образом на случай L_{∞} -алгебр. Для них также определяется комплекс Coder_f (комплекс $\operatorname{Шевалле}$ — $\operatorname{Эйленберга}$), классы \tilde{K}_A и α_f . Полученные результаты дают результаты, применимые к формальности DG-алгебр и алгебр Ли при подстановке в утверждения соответствующих минимальных моделей. Мы продемонстрируем применимость результатов формальности, доказав следующие следствия.

Следствие 4. Пусть A, B - DG-алгебры. Тогда $A \oplus B$ формальна $\Leftrightarrow A \ u \ B$ формальны. Аналогичное утверждение справедливо для DG-алгебр $\mathcal{J}u$.

Доказательство. Следствие предложения 4, так как A (или B) есть прямое слагаемое A-модуля (соотв. B-модуля) $A \oplus B$.

Следствие 5. Если A, B - DG-алгебры, $H^*(B) \neq 0, A \otimes B$ формальна, тогда A формальна.

Доказательство. В алгебре B 1 не является кограницей, иначе если 1=da, то для любого коцикла $b \in B$ d(ab) = b. Поэтому есть разложение $B = k \oplus C$, где $dC \subseteq C$. Утверждение следует из следствия 4, так как A есть прямое слагаемое в $A \otimes B = A \oplus (A \otimes C)$.

Список литературы

- [1] J. Neisendorfer, T. Miller. Formal and coformal spaces. Illinois Journal of Mathematics, vol. 22, no. 4. (1978), 565–580.
- [2] J. Neisendorfer. Lie algebras, coalgebras and rational homotopy theory of nilpotent spaces. Pacific Journal of Mathematics, vol. 74, no. 2 (1978), 429–460.
- [3] B. Reinhold. L_{∞} -algebras and their cohomology. Emergent Scientist, vol. 3, no. 4 (2019).
- [4] D. Quillen. Rational homotopy theory. Annals of Mathematics, Second Series, vol. 90, no. 2 (1969), 205–295.
- [5] V. A. Lunts. On formality of DG algebras (after Kaledin). arXiv:0712.0996.
- [6] V. M. Buchstaber, T. E. Panov. Toric Topology. Math. Surv. and Monogr., vol. 204, Amer. Math. Soc., Providence, RI, 2015.
- [7] G. Denham, A. I. Suciu. *Moment-angle complexes, monomial ideals and Massey products*. Pure and Applied Mathematics Quarterly, vol. 3, no. 1 (2007), 25–60.
- [8] B. Keller. Introduction to A-infinity algebras and modules. arXiv:math/9910179

- [9] J. Grbić, A. Linton. Lowest-degree triple Massey products in moment-angle complexes. arXiv:1908.02222v2
- [10] Melvin Hochster. Cohen–Macaulay rings, combinatorics, and simplicial complexes. Ring Theory II (Proc. Second Oklahoma Conference). Dekker, New York (1977), 171–223.
- [11] F. Belchi, U. Buijs, J. M. Moreno-Fernández, A. Murillo. *Higher order Whitehead products and L-infinity structures on the homology of a DGL*. Linear Algebra and Its Applications, vol. 520 (2017), 16–31.
- [12] U. Buijs, J. M. Moreno-Fernández, A. Murillo. A_{∞} -structures and Massey products. arXiv:1801.03408
- [13] D. Kaledin. Some remarks on formality in families. Mosc. Math. J. 7 (2007), no. 4, 643–652.
- [14] E. S. Chibrikov. A right normed basis for free Lie algebras and Lyndon—Shirshov words. Journal of Algebra, vol. 302, no. 2 (2006), 593–612.
- [15] Т. В. Кадеишвили. Алгебраическая структура на гомологиях A_{∞} -алгебры. Сообщ. Акад. наук Груз. ССР., т. 108, 249–252.
- [16] В. А. Грауман. Гомологии петель момент-угол комплексов, coomsemcmsyrouux флаговым комплексам. Курсовая работа. URL: http://higeom.math.msu.su/course_papers/Grauman3.pdf.