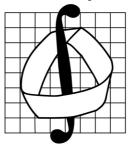
Московский государственный университет имени М. В. Ломоносова механико-математический факультет кафедра высшей геометрии и топологии



Курсовая работа студента 303 группы Ковыршиной Виктории Алексеевны

Гомотопический тип момент-угол-комплексов для графов

Научный руководитель: профессор, д.ф.-м.н. Панов Тарас Евгеньевич

1 Введение

Гомотопические свойства момент-угол-комплексов $\mathcal{Z}_{\mathcal{K}}$ представляют большой интерес, в этой области есть уже много результатов и ещё много вопросов [3]. С этой точки зрения довольно важен класс B_{Δ} симплициальных комплексов \mathcal{K} , для которых $\mathcal{Z}_{\mathcal{K}}$ гомотопически эквивалентен букету сфер. Полного комбинаторного описания симплициальных комплексов из этого класса пока нет, но известно, например, что B_{Δ} содержит направленные MF-комплексы [5], сдвинутые (shifted) и полностью заполняемые (totally fillable) комплексы [6, 7].

В одномерном же случае, то есть если Γ — граф, можно дать исчерпывающий ответ на вопрос, когда $\Gamma \in B_{\Delta}$, а именно тогда и только тогда, когда Γ — хордовый (теорема 4.1). Более того, гомотопический тип \mathcal{Z}_{Γ} для хордового Γ можно легко вычислить явно (следствие 4.5).

2 Хордовые графы

Пусть \mathcal{K} — симплициальный комплекс на [m], мы по умолчанию полагаем, что пустое множество \varnothing и все одноэлементные подмножества $\{i\} \subset [m]$ содержатся в \mathcal{K} .

Графом мы называем симплициальный комплекс, не содержащий симплексов размерности ≥ 2 .

Определение 2.1. Граф Γ называется <u>хордовым</u>, если каждый его цикл c четырьмя и более вершинами содержит хорду (ребро, соединяющее две вершины, которые не являются соседними в цикле).

Однако нам будет удобнее ещё одно описание хордовых графов:

Теорема 2.2 (см. [4]). Граф является хордовым тогда и только тогда, когда его вершины можно упорядочить таким образом, что для каждой вершины $\{i\}$ множество всех ее соседей, которые меньше ее, образует клику.

Порядок вершин, описываемый теоремой 1.2, называется cosepuennым nopяд-ком ucключения.

Введём несколько обозначений:

- для $I = \{i_1, \dots, i_k\}$ обозначим за \mathcal{K}_I (или же $\mathcal{K}_{\{i_1, \dots, i_k\}}$) полный подкомплекс в \mathcal{K} на вершинах i_1, \dots, i_k , через $\mathcal{K} \setminus \{m\}$ обозначим $\mathcal{K}_{\{1, \dots, m-1\}}$.
- определим симплициальный комплекс \mathcal{K}' на [m-1] как $\mathcal{K}' := \mathcal{K} \setminus \{m\}$.

 $^{^{1}}$ Примечание: любой хордовый граф — это *вполне заполняемый* симплициальный комплекс, поэтому результат уже известен.

- будем обозначать как \mathcal{K}_m полный подкомплекс в \mathcal{K} на множестве, состоящем из $\{m\}$ и всех её соседей, и соответственно $\mathcal{K}'_m := \mathcal{K}_m \setminus \{m\}$.
- за n будем обозначать число соседей $\{m\}$ в \mathcal{K} .

Сформулируем несколько очевидных (с учётом теоремы 2.2) свойств хордового графа:

Предложение 2.3. Пусть K — хордовый граф на [m], вершины которого расположены в совершенном порядке исключения. Тогда:

- 1° . $\mathcal{K}'-$ тоже хордовый граф, вершины которого расположены в совершенном порядке исключения;
- 2° . \mathcal{K}_m и \mathcal{K}'_m клики в \mathcal{K} ;
- 3° . $\operatorname{link}_{\mathcal{K}}\{m\} = \operatorname{sk}^{0}(\mathcal{K}'_{m})$, то есть $\operatorname{link}_{\mathcal{K}}\{m\} \operatorname{это} n$ дизънктных точек.

Далее по умолчанию считаем, что у всех хордовых графов вершины расположены в совершенном порядке исключения.

Теперь перейдём к рассмотрению момент-угол-комплексов $\mathcal{Z}_{\mathcal{K}}$.

3 Несколько вспомогательных лемм

Следующие два факта будут нам полезны в дальнейшем.

Предложение 3.1. Для пространств c отмеченной точкой A, B имеем:

1°.
$$\Sigma A \wedge B \simeq \Sigma (A \wedge B) \simeq A * B;$$

$$2^{\circ}. \ \Sigma(A\times B)\simeq \Sigma A\vee \Sigma B\vee (\Sigma A\wedge B).$$

Лемма 3.2 ([3], лемма 8.2.3). Пусть A, B, C, D — топологические порстранства. Определим Q из гомотопического кодекартова квадрата

$$\begin{array}{ccc} A \times B & \xrightarrow{\epsilon_A \times \mathrm{id}_B} & C \times B \\ & & \downarrow & & \downarrow \\ & A \times D & \longrightarrow & Q \end{array}$$

Тогда $Q \simeq (A * B) \lor (C \rtimes B) \lor (A \ltimes D)$.

Теперь рассмотрим произвольный хордовый граф \mathcal{K} . Заметим, что разложение $\mathcal{K} = \mathcal{K}' \ \bigcup_{\mathrm{link}_{\mathcal{K}}\{m\}} \mathrm{star}_{\mathcal{K}}\{m\}$ даёт кодекартов квадрат в категории симплициаь-

ных комплексов.

$$\lim_{\mathcal{K}} \{m\} \longrightarrow \operatorname{star}_{\mathcal{K}} \{m\}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathcal{K}' \longrightarrow \mathcal{K}$$

Он индуцирует кодекартов квадрат полиэдральных произведений: (частный случай диаграммы (8) из [1])

$$\mathcal{Z}_{\operatorname{link}_{\mathcal{K}}\{m\}} \times S^{1} \xrightarrow{1 \times i} \mathcal{Z}_{\operatorname{link}_{\mathcal{K}}\{m\}} \times D^{2}$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$\mathcal{Z}_{\mathcal{K}'} \times S^{1} \longrightarrow \mathcal{Z}_{\mathcal{K}}$$
(1)

Здесь i — вложение $S^1 \to D^2$, а $j: \mathcal{Z}_{\text{link}_{\mathcal{K}}\{m\}} \to \mathcal{Z}_{\mathcal{K}'}$ — отображение моментугол-комплексов, индуцированное вложением $\text{link}_{\mathcal{K}}\{m\} \to \mathcal{K}'$ симплициальных комплексов на [m-1].

Пемма 3.3. Отображение $j: \mathcal{Z}_{link_{\mathcal{K}}\{m\}} \to \mathcal{Z}_{\mathcal{K}'}$ гомотопно тривиальному для любого хордового графа \mathcal{K} .

Доказательство этой леммы будет приведено позже, а сейчас рассмотрим её следствие.

Предложение 3.4. $\mathcal{K}-$ хордовый граф, тогда $\mathcal{Z}_{\mathcal{K}}\simeq \Sigma^2\mathcal{Z}_{\mathrm{link}_{\mathcal{K}}\{m\}}\vee (\mathcal{Z}_{\mathcal{K}'}\rtimes S^1).$

Доказательство. Так как отображение $i:S^1\to D^2$ гомотопно тривиальному, то, с учётом леммы 3.3, можем применить лемму 3.2 к диаграмме (1), откуда получаем $\mathcal{Z}_{\mathcal{K}}\simeq (\mathcal{Z}_{\mathrm{link}_{\mathcal{K}}\{m\}}*S^1)\vee (\mathcal{Z}_{\mathcal{K}'}\rtimes S^1)\vee (\mathcal{Z}_{\mathrm{link}_{\mathcal{K}}\{m\}}\ltimes D^2).$ Так как $A\ltimes D^2\simeq pt$ и $A*S^1\simeq \Sigma^2 A$, получаем желаемое.

Будем обозначать как $\mathcal{Z}_{[m]^i}$ момент-угол-комплекс для симплициального комплекса $\mathrm{sk}^i(\Delta^{m-1})$ на [m]. По теореме 4.7.7 из [3] имеем, что

$$\mathcal{Z}_{[m]^i} \simeq \bigvee_{k=i+2}^m (S^{i+k+1})^{\vee C_m^k C_{k-1}^{i+1}} . \tag{2}$$

Тогда из пунктов 2° и 3° предложения 2.3 получаем

$$\mathcal{Z}_{\operatorname{link}_{\mathcal{K}}\{m\}} \cong T^{m-1-n} \times \mathcal{Z}_{[n]^0} \quad \text{if} \quad \mathcal{Z}_{\mathcal{K}'_m} \cong T^{m-1-n} \times \mathcal{Z}_{[n]^1}, \tag{3}$$

где $\operatorname{link}_{\mathcal{K}}\{m\}$ и \mathcal{K}'_m рассматриваются на множестве [m-1].

Перейдём к доказательству леммы 3.3.

Доказательство. Рассмотрим вложение $\operatorname{link}_{\mathcal{K}}\{m\} \to \mathcal{K}',$ его можно разложить в композицию вложений

$$\operatorname{link}_{\mathcal{K}}\{m\} \to \mathcal{K}'_m \to \mathcal{K}',$$
 где все комплексы рассматриваем на $[m-1].$

Тогда с учётом (3) отображение $j:\mathcal{Z}_{\mathrm{link}_{\mathcal{K}}\{m\}}\to\mathcal{Z}_{\mathcal{K}'}$ раскладывается в композицию

$$j: T^{m-1-n} \times \mathcal{Z}_{[n]^0} \xrightarrow{1 \times f} T^{m-1-n} \times \mathcal{Z}_{[n]^1} \xrightarrow{g} \mathcal{Z}_{\mathcal{K}'} ,$$

где $f: \mathcal{Z}_{[n]^0} \to \mathcal{Z}_{[n]^1}$ — отображение, индуцированное вложением $\operatorname{link}_{\mathcal{K}}\{m\} \to \mathcal{K}'_m$ как симплициальных комплексов на множестве соседей $\{m\}$, т.е. на $\operatorname{sk}^0(\mathcal{K}'_m)$ без призрачных вершин.

Заметим, что $g=(g\circ\pi_1)\times(g\circ\pi_2)$, причём $g\circ\pi_1:T^{m-1-n}\to\mathcal{Z}_{\mathcal{K}'}$ гомотопно тождественному. Действительно, $\mathcal{Z}_\varnothing\to\mathcal{Z}_\mathcal{K}$ гомотопно тождественному для любого симплициального комплекса \mathcal{K} без призрачных вершин.

Теперь, чтобы доказать желаемое, достаточно доказать, что $f: \mathcal{Z}_{[n]^0} \to \mathcal{Z}_{[n]^1}$ гомотопно тождественному.

Из (2) мы знаем, что $\mathcal{Z}_{[n]^0}$ — букет сфер. Обозначим его через $\mathcal{Z}_{[n]^0} \simeq \bigvee_{\alpha} S^{n_{\alpha}}$, $n_{\alpha} \geq 3$, и через $i_{\alpha}: S^{n_{\alpha}} \to \mathcal{Z}_{[n]^0}$ обозначим вложение α -го слагаемого в этот букет. Тогда можно разложить f в букет отображений $f = \bigvee_{\alpha} f_{\alpha}$, где $f_{\alpha} = f \circ i_{\alpha}$. Докажем, что класс $[f_{\alpha}] = 0$ в $\pi_{n_{\alpha}}(\mathcal{Z}_{[n]^1})$ для всех α ; это будет означать, что f гомотопно тривиальному.

Вспомним расслоение $\mathcal{Z}_{\mathcal{K}} \to (\mathbb{C}P^{\infty})^{\mathcal{K}} \to (\mathbb{C}P^{\infty})^m$ из теоремы 4.3.2 [3] и рассмотрим следующую коммутативную диаграмму:

Так как $(\mathbb{C}P^{\infty})^n \simeq K(\mathbb{Z}^n, 2)$, то из длинной точной последовательности расслоения получаем, что для i=0,1 отображение $(h_i)_*:\pi_k(\mathcal{Z}_{[n]^i})\to\pi_k((\mathbb{C}P^{\infty})^{[n]^i})$ есть изоморфизм при всех $k\geq 3$. Тогда для доказательства $[f_{\alpha}]=0$ достаточно доказать, что $\widetilde{f}\circ h_0\circ i_{\alpha}$ гомотопно тривиальному.

Гомотопическая группа $\pi_2((\mathbb{C}P^\infty)^{[n]^0})\cong \mathbb{Z}^n$ имеет n канонических образующих, представленных отображениями

$$\widehat{\mu}_i: S^2 \to \mathbb{C}P^{\infty} \to (\mathbb{C}P^{\infty})^{\vee n} = (\mathbb{C}P^{\infty})^{[n]^0}, \quad i = 1, \dots, n$$

где отображение слева — вложение двумерной клетки, а отображение справа — вложение в i-е слагаемое букета.

Так как sk¹(Δ^{n-1}) содержит все рёбра $\{i,j\}$, то из предложения 8.4.2 [3] следует, что $\widetilde{f}_*[\widehat{\mu}_i,\widehat{\mu}_j]_w=0$ для всех $i,j=1,\ldots n$, где $[\widehat{\mu}_i,\widehat{\mu}_j]_w$ — произведение Уайтхеда. Тогда \widetilde{f}_* отображает в ноль и любые итерированные произведения Уайтхеда от образующих $\widehat{\mu}_i$.

Осталось доказать только, что $h_0 \circ i_\alpha$ есть какое-то итерированное произведение Уайтхеда. Однако это следует из работы [2] (так как $\mathcal{Z}_{[n]^0}$ удовлетворяет условию леммы 6.1 из [2]), что и завершает доказательство.

Замечание 3.5. Мы выяснили, что каноническое вложение момент-угол-комплексов $f: \mathcal{Z}_{[m]^i} \to \mathcal{Z}_{[m]^{i+1}}$ гомотопно тривиальному отображению при i=0. Однако оно также будет гомотопно тривиальному при всех $i \geq 0$, что следует из работ [6, 8] (см. пример 3.5, теорему 3.6 в [8]).

Действительно, любой скелет симплекса является сдвинутым (shifted) комплексом, а значит все сферы в букете $\mathcal{Z}_{[m]^i}$ представлены итерированными произведениями Уайтхеда вида $[[\dots[[\widehat{\mu}_{i_1},\dots,\widehat{\mu}_{i_p}],\widehat{\mu}_{j_1}],\dots,\widehat{\mu}_{j_{q-1}}],\widehat{\mu}_{j_q}]$, где $\{i_1,\dots,i_p\}$ — недостающая грань симплициального комплекса $[m]^i$, а $[\widehat{\mu}_{i_1},\dots,\widehat{\mu}_{i_p}]$ — соответствующее высшее произведение Уайтхеда. Так как $[m]^{i+1}$ содержит все недостающие грани $[m]^i$, то в обозначениях доказательства выше получаем $\widehat{f}_*[\widehat{\mu}_{i_1},\dots,\widehat{\mu}_{i_p}]=0$, откуда и следует, что f гомотопно тривиальному (в точности по аналогии с доказательством леммы 3.3).

4 Основной результат

Теорема 4.1. Пусть K — некоторый граф на [m]. Тогда \mathcal{Z}_K гомотопически эквивалентен букету сфер тогда и только тогда, когда K хордовый.

Доказательство. (\Leftarrow) Пусть \mathcal{K} — хордовый. Будем доказывать индукцией по числу вершин в графе, что гомотопический тип $\mathcal{Z}_{\mathcal{K}}$ — букет сфер. База индукции для графа на одной вершине очевидна.

Предположим, что для любого хордового графа Γ на (m-1) вершине \mathcal{Z}_{Γ} гомотопически эквивалентен букету сфер. Тогда из предложения 2.3 получаем, что $\mathcal{Z}_{\mathcal{K}'}$ гомотопически эквивалентен букету сфер. В качестве следствия этого получаем $\mathcal{Z}_{\mathcal{K}'} \rtimes S^1 \simeq \mathcal{Z}_{\mathcal{K}'} \vee \Sigma \mathcal{Z}_{\mathcal{K}'}$.

С учётом предложения 3.4 получаем

$$\mathcal{Z}_{\mathcal{K}} \simeq \Sigma^2 \mathcal{Z}_{\mathrm{link}_{\mathcal{K}}\{m\}} \vee (\mathcal{Z}_{\mathcal{K}'} \rtimes S^1) \simeq \Sigma^2 \mathcal{Z}_{\mathrm{link}_{\mathcal{K}}\{m\}} \vee \mathcal{Z}_{\mathcal{K}'} \vee \Sigma \mathcal{Z}_{\mathcal{K}'} .$$

Чтобы доказать, что $\mathcal{Z}_{\mathcal{K}}$ гомотопически эквивалентен букету сфер, достаточно доказать, что $\Sigma \mathcal{Z}_{\operatorname{link}_{\mathcal{K}}\{m\}}$ гомотопически эквивалентен букету сфер.

С учётом (3), применяя предложение 3.1, получаем, что

$$\begin{split} \Sigma \mathcal{Z}_{\mathrm{link}_{\mathcal{K}}\{m\}} &\cong \Sigma(T^{m-1-n} \times \mathcal{Z}_{[n]^0}) \simeq \\ &\simeq \Sigma T^{m-1-n} \vee \Sigma \mathcal{Z}_{[n]^0} \vee \Sigma T^{m-1-n} \wedge \mathcal{Z}_{[n]^0} \;, \end{split}$$

где $\mathcal{Z}_{[n]^0}$ — букет сфер из (2), а ΣT^{m-1-n} букет сфер как надстрока над произведением сфер.

Следовательно, $\mathcal{Z}_{\mathcal{K}}$ гомотопически эквивалентен букету сфер, что завершает шаг индукции.

 (\Rightarrow) Теперь пусть $\mathcal K$ не является хордовым. Предположим, что $\mathcal Z_{\mathcal K}$ гомотопически эквивалентен букету сфер.

Выберем бесхордовый цикл C на $p \ge 4$ вершинах. Умножение в $H^*(\mathcal{Z}_C)$ нетривиально согласно теореме 4.6 из [2].

Так как C является полным подкомплексом в \mathcal{K} , то \mathcal{Z}_C есть ретракт $\mathcal{Z}_{\mathcal{K}}$ ([1], лемма 4.2) и $H^*(\mathcal{Z}_C)$ есть подкольцо в $H^*(\mathcal{Z}_{\mathcal{K}})$. При этом умножение в $H^*(\mathcal{Z}_{\mathcal{K}})$ тривиально, а умножение в $H^*(\mathcal{Z}_C)$ нетривиально, что невозможно. Полученное противоречие показывает, что $\mathcal{Z}_{\mathcal{K}}$ не может быть гомотопически эквивалентен букету сфер.

Замечание 4.2. Теорема 4.6.12 из [3] даёт явный вид

$$\mathcal{Z}_C \cong \overset{p-1}{\underset{k=3}{\#}} (S^k \times S^{p+2-k})^{\#(k-2)C_{p-2}^{k-1}}.$$

Перепишем эту связную сумму как

$$\mathcal{Z}_C \cong \left(\bigvee_{k=3}^{p-1} (S^k \vee S^{p+2-k})^{\vee (k-2)C_{p-2}^{k-1}}\right) \cup_{\varphi} D^{p+2} \stackrel{\text{def}}{=} M \cup_{\varphi} D^{p+2} ,$$

где $\varphi: D^{p+2} \to M$ — отображение приклеивания клетки D^{p+2} по сумме про-изведений Уайтхеда $\sum\limits_{k=3}^{p-1}\sum\limits_{i=1}^{(k-2)C_{p-2}^{k-1}}[a_i^k,\,b_i^k]_w$, где $a_i^k \lor b_i^k: S_i^k \lor S_i^{p+2-k} \to M$ —вложения соответствующих слагаемых в букет M.

Это позволяет явно вычислить $H^*(\mathcal{Z}_C)$ и убедиться в нетривиальности умножения, не прибегая κ теореме 4.6 из [2].

Замечание 4.3. Заметим, что для любого симплициального комплекса K (уже не обязательно графа) наличие в K^1 бесхордового цикла C на $p \geq 4$ вершинах является препятствием κ тому, чтобы \mathcal{Z}_K был букетом сфер, ведь C всегда является полным подкомплексом в K.

Таким образом, хордовость одномерного остова \mathcal{K}^1 является neo 6xo dumым условием для того, чтобы $\mathcal{Z}_{\mathcal{K}}$ был гомотопически эквивалентен букету сфер.

Теперь вычислим явно гомотопический тип $\mathcal{Z}_{\mathcal{K}}$ для хордового графа \mathcal{K} , т.е. найдём число сфер в каждой размерности. Для этого нам понадобится следующий результат.

Теорема 4.4 ([3], теорема 8.3.5). Пусть \mathcal{K} — симплициальный комплекс на [m] и пусть (\mathbf{X}, \mathbf{A}) — последовательность пар клеточных пространств таких, что все X_i стягиваемы. Тогда есть следующая гомотопическая эквивалентность:

$$\Sigma(\mathbf{X}, \mathbf{A})^{\mathcal{K}} \xrightarrow{\simeq} \Sigma \left(\bigvee_{J \notin \mathcal{K}} |\mathcal{K}_J| * \mathbf{A}^{\wedge J} \right)$$
 (4)

Следствие 4.5. Пусть K — хордовый граф, тогда есть следующая гомотопическая эквивалентность:

$$\mathcal{Z}_{\mathcal{K}} \simeq \bigvee_{J \notin \mathcal{K}} (S^{1+|J|})^{\vee c_J^0} \vee (S^{2+|J|})^{\vee c_J^1} ,$$

 $e \partial e \ c_J^i := \operatorname{rank} \widetilde{H}^i(\mathcal{K}_J).$

Доказательство. Применяя предыдущую теорему нашему случаю $X_i = D^2,$ $A_i = S^1,$ получаем $\mathbf{A}^{\wedge J} = S^{|J|}$ и $|\mathcal{K}_J| * \mathbf{A}^{\wedge J} \simeq \Sigma |\mathcal{K}_J| \wedge S^{|J|} \simeq \Sigma^{1+|J|} |\mathcal{K}_J|.$

Следовательно,
$$\Sigma \mathcal{Z}_{\mathcal{K}} \simeq \Sigma \left(\bigvee_{J \notin \mathcal{K}} \Sigma^{1+|J|} |\mathcal{K}_{J}| \right).$$

Так как \mathcal{K} это граф, то $|\mathcal{K}_J|$ гомотопически эквивален дизъюнктному объединению букетов окружностей, причём $c_J^0 + 1$ — число компонент связности $|\mathcal{K}_J|$, а c_J^1 — общее число окружностей в букетах $|\mathcal{K}_J|$.

Следовательно, $\Sigma |\mathcal{K}_J| \simeq (S^1)^{\vee c_J^0} \vee (S^2)^{\vee c_J^1}$.

Тогда
$$\Sigma \mathcal{Z}_{\mathcal{K}} \simeq \sum \bigvee_{J \notin \mathcal{K}} (S^{1+|J|})^{\vee c_J^0} \vee (S^{2+|J|})^{\vee c_J^1}.$$

Наконец, \mathcal{K} — это *хордовый* граф, поэтому по теореме 3.1 $\mathcal{Z}_{\mathcal{K}}$ — это букет сфер. Следовательно, в предыдущем равенстве слева и справа можно снять внешние надстройки, что и даёт желаемый результат.

Замечание 4.6. Пусть K — хордовый граф, K^f — его флагификация, а $(K^f)^i$ — её i-мерный скелет. Тогда есть следующая гомотопическая эквивалентность:

$$\mathcal{Z}_{(\mathcal{K}^f)^i} \simeq \bigvee_{J \notin \mathcal{K}} (S^{1+|J|})^{\vee c_J^0} \vee (S^{1+i+|J|})^{\vee c_J^i} \ , \ \textit{ide } c_J^j := \mathrm{rank} \, \widetilde{H}^j(\mathcal{K}_J) \ .$$

Из замечания 3.5 и доказательства теоремы 4.1 следует, что $\mathcal{Z}_{(\mathcal{K}^f)^i}$ гомотопически эквивалентен букету сфер для всех $i \geq 0$, также $|\mathcal{K}_J|$ гомотопически эквивалентен дизъюнктному объединению букетов i-мерных сфер для всех $J \subset [m]$, поэтому доказательство этого утверждения в точности повторяет доказательство следствия 4.5.

Список литературы

- [1] T. E. Panov, S. Theriault, «The homotopy theory of polyhedral products associated with flag complexes», arXiv: 1709.00388v2.pdf.
- [2] J. Grbić, T. Panov, S. Theriault, J. Wu, «The homotopy types of moment–angle complexes for flag complexes»// Trans. Amer. Math. Soc. 2016. V. 368, N 9. P. 6663–6682, arXiv: 1211.0873.pdf.
- [3] V. M. Buchstaber, T. E. Panov, «Toric Topology», Mathematical Surveys and Monographs 204, American Mathematical Society, 2015.
- [4] D. R. Fulkerson, O. A. Gross, «Incidence matrices and interval graphs», Pacific J.Math, 15:3 (1965), 835–855.
- [5] J. Grbić, S. Theriault, «Homotopy theory in toric topology», Russian Mathematical Surveys, 2016, 71(2):185.
- [6] K. Iriye, D. Kishimoto, «Polyhedral products for shifted complexes and higher Whitehead products»: E-print, 2015. arXiv:1505.04892 [math.AT].
- [7] K. Iriye, D. Kishimoto, «Whitehead products in moment-angle complexes»: E-print, 2018. arXiv:1807.00087[math.AT].
- [8] S.A. Abramyan, T.E. Panov, «Higher Whitehead Products in Moment—Angle Complexes and Substitution of Simplicial Complexes», Proceedings of the Steklov Institute of Mathematics, 2019, 305, 1–2.