ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В. ЛОМОНОСОВА»

Механико-математический факультет
Кафедра математической статистики и случайных процессов
ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА
(ДИПЛОМНАЯ РАБОТА)

специалиста

Момент-угол комплексы, маломерные многогранники и графы

Выполнила студентка 603 группы
Оганисян Виктория Алексеевна
r
(подпись студента)
Научный руководитель:
доктор физмат. наук, профессор
Панов Тарас Евгеньевич
(HOURINGS, HOWINGTO DANGED INTEGRAL

Содержание

1	Введение	2
2	Предварительные сведения	4
	2.1 Многогранники	5
	2.2 Графы	6
	2.3 Произведения Масси	7
3	Многогранники	7
	3.1 Трёхмерные многогранники	8
	3.2 Четырёхмерные многогранники	10
4	Графы	19
	4.1 Вспомогательные утверждения и обозначения	19
	4.2 Хордовые графы	22
5	Благодарности	25

1 Введение

Несомненный интерес представляет изучение гомотопических свойств момент-угол комплексов $\mathcal{Z}_{\mathcal{K}}$, в данной области имеется много важных результатов и открытых вопросов [1], и она продолжает активно развиваться. Момент-угол комплексы — интересный и важный класс пространств, отдельный интерес среди которых представляют те, которые соответствуют простым многогранникам P. Такие момент-угол-комплексы \mathcal{Z}_P являются гладкими многообразиями с комплексной структурой; более того, они могут быть заданы как пересечение эрмитовых квадрик.

В данной работе мы изучаем многогранники P, для которых соответствующие момент-угол многообразия \mathcal{Z}_P диффеоморфны или гомотопически эквивалентны связным суммам произведений сфер. Известны широкие классы многогранников P (например, двойственные стековым, циклические), для которых \mathcal{Z}_P диффеоморфны связной сумме произведений nap сфер (см. [1], [3]), однако пример P такого, что $\mathcal{Z}_P \cong M_1 \# M_2 \# \dots \# M_k$, где все M_i это произведения сфер и хотя бы одно M_i содержит более ∂syx множителей, появился относительно недавно (см. [4], [12]).

Один из главных открытых вопросов в этом направлении — описать класс многогранников P, для которых \mathcal{Z}_P гомотопически эквивалентно связной сумме произведений сфер. В данной работе исследуется случай многогранников размерности 3 и 4. Для трёхмерных многогранников получен исчерпывающий ответ на этот вопрос.

Теорема (см. теорему 3.1). Пусть P-mрёхмерный простой многогранник, не являющийся кубом; тогда следующие утверждения эквивалентны:

- (a) P получается из симплекса Δ^3 последовательной срезкой вершин, то есть P^* стековый многогранник;
- (b) \mathcal{Z}_P гомотопически эквивалентен связной сумме произведений сфер.
- $(c)\ H^*(\mathcal{Z}_P)$ изоморфно кольцу когомологий связной суммы произведений сфер.
- (d) 1-остов \mathcal{K}_P хордовый граф.
- (e) \mathcal{K}_P минимально неголодов.

Заметим, что момент-угол многообразие, соответствующее трёхмерному кубу, диффеоморфно $S^3 \times S^3 \times S^3$.

Любая двумерная симплициальная сфера комбинаторно эквивалентна границе трёхмерного многогранника. Однако это уже неверно для трёхмерных

симплициальных сфер. Для трёхмерных симплициальных сфер, а значит и для четырёхмерных многогранников, получены следующие результаты.

Теорема (см. теорему 3.9). Пусть K — трёхмерная симплициальная сфера. Тогда $H^*(\mathcal{Z}_K) \cong H^*(M)$, где M — связная сумма произведений сфер, в том и только в том случае, когда верно одно из следующих утверждений:

- (a) \mathcal{K} граница четырёхмерного октаэдра, и $\mathcal{Z}_{\mathcal{K}} \cong S^3 \times S^3 \times S^3 \times S^3$;
- (b) $K^1 xop \partial oвый граф;$
- (c) K^1 имеет ровно два недостающих ребра, и они не смежны друг с другом, то есть образуют границу квадрата.

Данная теорема является критерием изоморфизма колец когомологий $H^*(\mathcal{Z}_{\mathcal{K}}) \cong H^*(M)$. Таким образом, вышеуказанное условие на \mathcal{K}^1 является необходимым для гомотопической эквивалентности $\mathcal{Z}_{\mathcal{K}} \sim M$, однако пока неизвестно, является ли оно достаточным. При этом верно следующее.

Теорема (см. теорему 3.12). Пусть \mathcal{K} — трёхмерная симплициальная сфера такая, что \mathcal{K}^1 — хордовый граф. Тогда все высшие произведения Масси в $H^*(\mathcal{Z}_{\mathcal{K}})$ тривиальны.

Следствие (см. следствие 3.14). Пусть \mathcal{K} — трёхмерная симплициальная сфера. Тогда \mathcal{K} минимально неголодов тогда и только тогда, когда \mathcal{K}^1 — хордовый граф.

Вопрос о достаточности условия хордовости \mathcal{K}^1 для формальности $\mathcal{Z}_{\mathcal{K}}$ пока остается открытым.

При изучении гомотопического типа момент-угол комплексов важен класс B_{Δ} симплициальных комплексов \mathcal{K} , для которых $\mathcal{Z}_{\mathcal{K}}$ гомотопически эквивалентен букету сфер. Полного комбинаторного описания симплициальных комплексов из этого класса пока нет, но известно, например, что B_{Δ} содержит направленные MF-комплексы [9], сдвинутые (shifted) и вполне заполняемые (totally fillable) комплексы [13, 14]. Если же Γ — граф, можно дать исчерпывающий ответ на вопрос, когда $\Gamma \in B_{\Delta}$, а именно тогда и только тогда, когда Γ — хордовый (теорема 4.6). Более того, гомотопический тип \mathcal{Z}_{Γ} для хордового Γ можно легко вычислить явно (следствие 4.9).

2 Предварительные сведения

Множество $\{1, 2, ..., m\}$ из m элементов мы для краткости обозначаем как [m]. Пусть \mathcal{K} — симплициальный комплекс на [m], мы по умолчанию полагаем, что пустое множество \varnothing и все одноэлементные подмножества $\{i\} \subset [m]$ содержатся в \mathcal{K} .

Для $I = \{i_1, \ldots, i_k\} \subset [m]$ будем обозначать как \mathcal{K}_I (или же $\mathcal{K}_{\{i_1,\ldots,i_k\}}$) полный подкомплекс в \mathcal{K} на вершинах i_1,\ldots,i_k . Мы обозначаем i-й остов симплициального комплекса \mathcal{K} как \mathcal{K}^i .

Момент-угол-комплекс $\mathcal{Z}_{\mathcal{K}}$, соответствующий \mathcal{K} , можно определить следующим образом (см. параграф 4.1 [1]):

$$\mathcal{Z}_{\mathcal{K}} = \bigcup_{I \subset \mathcal{K}} \left(\prod_{i \in I} D^2 \times \prod_{i \notin I} S^1 \right) .$$

Лемма 2.1. Пусть \mathcal{K} — симплициальный комплекс на множестве вершин [m], а \mathcal{K}_J — полный подкомплекс, соответствующий $J \subset [m]$. Тогда $\mathcal{Z}_{\mathcal{K}_J}$ — ретракт $\mathcal{Z}_{\mathcal{K}}$, а $H^*(\mathcal{Z}_{\mathcal{K}_J})$ — подкольцо в $H^*(\mathcal{Z}_{\mathcal{K}})$.

Доказательство. Если профакторизовать $\mathcal{Z}_{\mathcal{K}}$ по всем координатам из множества $[m]\setminus J$, мы получим в точности $\mathcal{Z}_{\mathcal{K}_J}$. Действительно, пусть $i:\mathcal{Z}_{\mathcal{K}}\hookrightarrow (D^2)^m$ — каноническое вложение, а $q:(D^2)^m\to (D^2)^{|J|}$ — отображение факторизации слагаемых с номерами из множества $[m]\setminus J$, тогда $r=q\circ i:\mathcal{Z}_{\mathcal{K}}\to\mathcal{Z}_{\mathcal{K}_J}$ и есть нужная ретракция.

Теорема 2.2 ([1, теорема 4.5.8]). Имеются изоморфизмы групп

$$H^{l}(\mathcal{Z}_{\mathcal{K}}) \cong \bigoplus_{J \subset [m]} \widetilde{H}^{l-|J|-1}(\mathcal{K}_{J})$$

и изоморфизм колец $H^*(\mathcal{Z}_{\mathcal{K}})\cong\bigoplus_{J\subset [m]}\widetilde{H}^*(\mathcal{K}_J)$, где структура умножения в кольце справа задается каноническими отображениями

$$H^{k-|I|-1}(\mathcal{K}_I) \otimes H^{l-|J|-1}(\mathcal{K}_J) \longrightarrow H^{k+l-|I|-|J|-1}(\mathcal{K}_{I\cup J})$$
,

индуцированными симплициальными отображениями $\mathcal{K}_{I\cup J}\to\mathcal{K}_I*\mathcal{K}_J$ в случае $I\cap J=\varnothing$ и нулем иначе.

Из теоремы 2.2 очевидным образом следует, что для любого $\mathcal K$ верно

$$H^1(\mathcal{Z}_{\mathcal{K}}) = 0$$
 и $H^2(\mathcal{Z}_{\mathcal{K}}) = 0.$ (1)

Для краткости мы используем обозначения

$$\mathcal{H}^{l,J} = \widetilde{H}^l(\mathcal{K}_J), \quad \mathcal{H}^{*,J} = \widetilde{H}^*(\mathcal{K}_J) \quad \text{if} \quad \mathcal{H}^{l,*} = \bigoplus_{J \subset [m]} \widetilde{H}^l(\mathcal{K}_J).$$

Структура кольца на $H^*(\mathcal{Z}_{\mathcal{K}}) = \mathcal{H}^{*,*}(\mathcal{K})$ задается отображениями

$$\mathcal{H}^{k,I} \otimes \mathcal{H}^{l,J} \longrightarrow \mathcal{H}^{k+l+1,I \sqcup J}, \qquad k, l \ge 0, \ I \cap J = \varnothing.$$
 (2)

Предложение 2.3. Пусть K — симплициальный комплекс размерности n, тогда когомологическая длина \mathcal{Z}_K не превосходит n+1.

Доказательство. Пусть есть r элементов $c_i \in H^{l_i}(\mathcal{Z}_K)$ таких, что $c_1 \cdot \ldots \cdot c_r = c \neq 0$. Тогда по теореме 2.2 найдутся соответствующие им элементы $\widehat{c} \in \mathcal{H}^{l,J}$ и $\widehat{c}_i \in \mathcal{H}^{l_i-|J_i|-1,J_i}$, для которых $\widehat{c}_1 \cdot \ldots \cdot \widehat{c}_r = \widehat{c} \neq 0$, где $l = (\sum_{i=1}^r l_i - |J_i| - 1) + r - 1$, $l_i - |J_i| - 1 \geq 0$ и $J = J_1 \sqcup \cdots \sqcup J_r$. Тогда

$$n = \dim \mathcal{K} \ge l = \left(\sum_{i=1}^{r} l_i - |J_i| - 1\right) + r - 1 \ge r - 1,$$

откуда получаем $n+1 \ge r$, что и требовалось.

2.1 Многогранники

(Выпуклым) *многогранником* P называется замкнутое пересечение конечного числа полупространств в вещественном аффинном пространстве. Γ называется его грань коразмерности 1.

Многогранник P размерности n называется npocmым, если каждая его вершина принадлежит ровно n его гиперграням. Соответственно, если P простой, то двойственный к нему многогранник P^* будет симплициальным, и его границу ∂P^* можно рассматривать как симплициальный комплекс, который мы будем обозначать \mathcal{K}_P (нерв-комплекс простого многогранника P). Соответствующий \mathcal{K}_P момент-угол-комплекс $\mathcal{Z}_{\mathcal{K}_P}$ обозначается \mathcal{Z}_P .

Далее, если не оговорено противное, n будет обозначать размерность простого многогранника P, а m — количество его гиперграней.

Теорема 2.4 ([1, теорема 4.1.4, следствие 6.2.5]). Пусть \mathcal{K} — триангуляция сферы размерности (n-1) с m вершинами. Тогда $\mathcal{Z}_{\mathcal{K}}$ — замкнутое топологическое многообразие размерности m+n.

 $\Pi y cm b \ P \ - \ npocmoй \ n$ -мерный многогранник $c \ m \ runeprpaнями, morda \ \mathcal{Z}_P \ - \ radкое многообразие размерности <math>m+n$.

Простой многогранник Q называется $cme\kappa o \omega m$, если он получается из симплекса цепочкой последовательных звёздных подразбиений гиперграней. Соотвественно, двойственный к стековому многогранник P получается из симплекса цепочкой последовательных срезок вершин.

Связной суммой произведений сфер мы называем замкнутое n-мерное многообразие, получаемое взятием связной суммы от конечного числа слагаемых, являющихся произведениями сфер $S^{n_1} \times \cdots \times S^{n_k}$, где $n_1 + \cdots + n_k = n$.

Следующая теорема следует из результатов МакГаврана [5], см. [6, Theorem 6.3]. Также альтернативный подход изложен в [3, §2.2].

Теорема 2.5 ([1, Теорема 4.6.12]). Пусть \mathcal{K} — граница стекового многогранника размерности n с m > n+1 вершинами. Тогда соответствующее момент-угол многообразие гомеоморфно связной сумме произведений сфер,

$$\mathcal{Z}_{\mathcal{K}} \cong \overset{m-n+1}{\underset{k=3}{\#}} (S^k \times S^{m+n-k})^{\#(k-2)C_{m-n}^{k-1}}$$

В частности, момент-угол-комплексы, соответствующие многоугольникам (двумерным многогранникам) являются связными суммами произведений пар сфер.

2.2 Графы

Графом мы называем одномерный симплициальный комплекс.

Граф Γ называется xopдoвым, если каждый его цикл с четырьмя и более вершинами содержит хорду (то есть ребро, соединяющее две вершины, которые не являются соседними в цикле).

Порядок вершин графа такой, что для любой вершины $\{i\}$ все её соседи с номерами меньше i попарно смежны, называется совершенным порядком исключения.

Теорема 2.6 ([2]). Γ раф является хордовым тогда и только тогда, когда его вершины можно упорядочить в совершенном порядке исключения.

Следующее свойство хордовых графов напрямую следует из теоремы 2.6.

Предложение 2.7. Пусть Γ — хордовый граф на [m], вершины которого расположены в совершенном порядке исключения. Тогда для всех $i \in [m]$ граф $\Gamma \setminus \{i\}$ тоже хордовый, и при i=m его вершины автоматически расположены в совершенном порядке исключения.

2.3 Произведения Масси

Пусть (A,d) — дифференциально градуированная алгебра, и α_i — классы в когомологиях $H^{p_i}(A,d)$ для $1 \le i \le n$. Определяющая система, ассоциированная с $(\alpha_1,\ldots,\alpha_n)$, — это множество элементов $\{a_{i,k}\}$ для $1 \le i \le k \le n$, $(i,k) \ne (1,n)$ таких, что $a_{i,i} \in A^{p_i}$ — некоторый представитель класса α_i , и $a_{i,k} \in A^{p_i+\ldots+p_k-k+i}$ удовлетворяет равенству

$$da_{i,k} = \sum_{r=i}^{k-1} \overline{a_{i,r}} a_{r+1,k} ,$$

где $\overline{a_{i,r}} = (-1)^{1+\deg a_{i,r}} a_{i,r}$.

Каждой определяющей системе, ассоциированной с $(\alpha_1, \ldots, \alpha_n)$, соответствует коцикл, определяемый как

$$\sum_{r=1}^{n-1} \overline{a_{1,r}} a_{r+1,n} \in A^{p_1 + \dots + p_n - n + 2}$$

Произведение $Maccu\ \langle \alpha_1, \ldots, \alpha_n \rangle$ порядка n — это множество классов когомологий таких коциклов для всевозможных определяющих систем. То есть

$$\langle \alpha_1,\ldots,\alpha_n \rangle = \left\{ \sum_{r=1}^{n-1} \overline{a_{1,r}} a_{r+1,n} \mid \{a_{i,k}\}$$
 — определяющая система $\right\}$.

Произведение Масси тривиально, если $0 \in \langle \alpha_1, \ldots, \alpha_n \rangle$.

Заметим, что deg $a_{i,k}=\deg a_{i,r}+\deg a_{r+1,k}-1$ верно для любого $r=i,\ldots,k-1,$ поэтому $d\overline{a}_{i,k}=\sum_{r=i}^{k-1}a_{i,r}\overline{a}_{r+1,k}.$

Симплициальный комплекс \mathcal{K} на [m] называется голодовым, если умножение и все высшие операции Масси в $H^*(\mathcal{Z}_{\mathcal{K}})$ тривиальны.

Симплициальный комплекс \mathcal{K} на [m] называется минимально неголодовым, если \mathcal{K} не является голодовым, однако для любой вершины $v \in [m]$ комплекс $\mathcal{K} \setminus \{v\}$ уже голодовый.

3 Многогранники

В данном разделе мы изучаем класс многогранников P, для которых соответствующие момент-угол многообразия \mathcal{Z}_P гомотопически эквивалентны связным суммам произведений сфер. Оказывается, что в случае многогранников P размерности 3 и 4 важным фактором является структура 1-остова \mathcal{K}_P .

3.1 Трёхмерные многогранники

Основным результатом данного раздела является

Теорема 3.1. Пусть P — трёхмерный простой многогранник, не являющийся кубом; тогда следующие утверждения эквивалентны:

- (a) P получается из симплекса Δ^3 последовательной срезкой вершин, то есть P^* стековый многогранник:
- (b) \mathcal{Z}_P гомотопически эквивалентен связной сумме произведений сфер.
- (c) $H^*(\mathcal{Z}_P)$ изоморфно кольцу когомологий связной суммы произведений сфер.
- (d) 1-остов \mathcal{K}_P хордовый граф.
- (e) \mathcal{K}_P минимально неголодов.

Для доказательства теоремы нам потребуется следующая лемма.

Лемма 3.2. Пусть P — простой многогранник размерности n > 2 такой, что кольцо когомологий \mathcal{Z}_P изоморфно кольцу когомологий связной суммы произведений пар сфер. Тогда \mathcal{K}_P^1 — хордовый граф.

Доказательство. Пусть m — число граней P. Предположим, что

$$H^*(\mathcal{Z}_P) \cong H^*(M_1 \# M_2 \# \cdots \# M_k),$$

где $M_i = S^{l_i} \times S^{m+n-l_i}$. Обозначим соответствующие сферам образующие $H^*(\mathcal{Z}_P)$ как a_i, b_i , где $\deg a_i = l_i$, $\deg b_i = m+n-l_i, i=1,\ldots,k$, а фундаментальный класс обозначим как c, $\deg c = m+n$. Тогда имеются следующие соотношения: $a_i \cdot b_i = c$ для $i=1,\ldots,k$, в то время как все остальные умножения в $H^*(\mathcal{Z}_P)$ тривиальны.

Предположим, что в \mathcal{K}_P есть бесхордовый цикл C на p > 3 вершинах. Тогда C — полный подкомплекс в \mathcal{K}_P , следовательно $H^*(\mathcal{Z}_C)$ есть подкольцо в $H^*(\mathcal{Z}_P)$ по лемме 2.1. По теореме 2.5 \mathcal{Z}_C тоже является связной суммой пар сфер, и соответственно в кольце $H^*(\mathcal{Z}_C)$ есть нетривиальные умножения $a'_j \cdot b'_j = c'$, где c' соответствует фундаментальному классу \mathcal{Z}_C и $\deg(c') = |C| + 2 \le m + 2 < m + n = \deg(c)$, чего не может быть в $H^*(\mathcal{Z}_P)$.

Значит, в \mathcal{K}_P нет бесхордовых циклов более чем с тремя вершинами, а это и означает, что \mathcal{K}_P^1 — хордовый граф.

Теперь перейдем к доказательству теоремы 3.1.

Доказательство. Докажем следующие цепочки следствий: $(a)\Rightarrow(b)\Rightarrow(c)\Rightarrow(d)\Rightarrow(a)$, $(e)\Rightarrow(d)$ и $(a)\Rightarrow(e)$.

- $(a) \Rightarrow (b)$ следует из теоремы 2.5.
- $(b) \Rightarrow (c)$ очевидно.
- $(c)\Rightarrow (d)$ Пусть $H^*(\mathcal{Z}_P)\cong H^*(M_1\#M_2\#\dots\#M_k)$, где все M_i это произведения сфер. Больше dim(P)=3 слагаемых ни в каком M_i быть не может, так как когомологическая длина \mathcal{Z}_P равна трём (предложение 2.3). Если же какое-то M_i имеет ровно три слагаемых, то P куб согласно [4, теорема 4.3 (a)], что противоречит условию. Значит, все M_i содержат ровно по два слагаемых, и тогда \mathcal{K}_P^1 хордовый граф по лемме 3.2. $(d)\Rightarrow (a)$ Докажем это индукцией по m количеству гиперграней P. База при m=4 очевидна (тогда P симплекс).

Сделаем шаг индукции. Предположим, что импликация $(d)\Rightarrow(a)$ доказана для многогранников, имеющих не более m-1 гиперграней. Докажем это для произвольного многогранника P с m гипергранями.

Считаем, что вершины \mathcal{K}_P пронумерованы в совершенном порядке исключения. Пусть вершина со старшим номером m имеет s смежных с ней вершин, обозначим их номера как j_1, \ldots, j_s . Докажем, что s=3.

Обозначим i-тую гипергрань P как F_i . Тогда гипергрань F_m является s-угольником и смежна с гранями $F_{j_r}, r = 1, \ldots, s$. Все вершины $\{j_r\}$ попарно соединены ребрами, то есть образуют клику (это ясно из определения совершенного порядка исключения), поэтому все гиперграни F_{j_r} попарно смежны.

Предположим, что $s \ge 4$. Рассмотрим грани $F_{j_1}, F_{j_2}, F_{j_3}, F_{j_4}$. Можем считать, что они расположены вокруг F_m «по часовой стрелке», то есть F_{j_2} лежит между F_{j_1} и F_{j_3} , а F_{j_3} лежит между F_{j_2} и F_{j_4} , а следовательно $F_m \cap F_{j_1} \cap F_{j_3} = \emptyset$ и $F_m \cap F_{j_2} \cap F_{j_4} = \emptyset$. Покажем, что F_{j_1} с F_{j_3} и F_{j_2} с F_{j_4} не могут быть смежны одновременно: предположим, что F_{j_1} смежна с F_{j_3} , тогда грани F_m, F_{j_1}, F_{j_3} образуют 3-пояс, удаление которого из P разделит P на две компоненты связности [10, пункт 4 леммы 4], причём F_{j_2} и F_{j_4} будут лежать в разных компонентах, а значит они не могут быть смежны — противоречие. Итак, s=3, а значит F_m — треугольник.

Если F_m смежна хоть с одной треугольной гранью, то P — симплекс, а если нет, то существует многогранник P', из которого P получается срезкой вершины с образованием грани F_m [10, лемма 1]. Так как $\mathcal{K}_{P'}$ получается из \mathcal{K}_P удалением вершины $\{m\}$ и добавлением симплекса $\{j_1, j_2, j_3\}$, то 1-остов $\mathcal{K}_{P'}$ — хордовый граф согласно предложению 2.7. При этом P' имеет m-1 < m граней, а значит, для него верно предположение индукции и P' получается из симплекса несколькими срезками

вершин. P получается из P' срезкой вершины, и это завершает шаг индукции.

(e)⇒(d) Докажем от противного:

Пусть \mathcal{K}_P минимально неголодов и пусть он содержит бесхордовый цикл C на p>3 вершинах. Заметим, что C — полный подкомплекс в \mathcal{K}_P и что p < m (потому что p = m означало бы, что $\mathcal{K}_P = C$). Возьмем произвольную вершину $v \in [m] \setminus C$, тогда C — полный подкомплекс в том числе и в $\mathcal{K}_P \setminus \{v\}$. Значит, $H^*(\mathcal{Z}_C)$ — подкольцо в $H^*(\mathcal{Z}_{\mathcal{K}_P \setminus \{v\}})$ по лемме 2.1. Однако в $H^*(\mathcal{Z}_C)$ есть нетривиальные умножения (см. 2.5), а в $H^*(\mathcal{Z}_{\mathcal{K}_P \setminus \{v\}})$ все умножения должны быть нулевыми, так как комплекс $\mathcal{K}_P \setminus \{v\}$ голодов — противоречие.

Значит, таких циклов в \mathcal{K}_P быть не может, то есть \mathcal{K}_P^1 — хордовый граф.

(a) \Rightarrow (e) Это следует из доказанного в работе [11] критерия минимальной неголодовости обобщенных многогранников усечения (т.е. многогранников, получаемых срезками вершин из произведения симплексов), согласно которому для стекового $P^* \neq \Delta^n$ комплекс \mathcal{K}_P всегда минимально неголодов.

В случае $\dim(P) > 4$ условия хордовости \mathcal{K}_P^1 недостаточно для того, чтобы \mathcal{Z}_P было гомотопически эквивалентно связной сумме произведений сфер:

Пример 3.3. Обозначим через Q многогранник, получаемый из Δ^3 срезкой двух вершин (Q называют также 5-книжкой). Тогда из теоремы 2.5 нам известно, что

$$\mathcal{Z}_Q \cong (S^3 \times S^6)^{\#3} \# (S^4 \times S^5)^{\#2}$$
.

Рассмотрим многогранники вида $P_d = Q \times \Delta^d$, где $d \geq 2$. Размерность P_d равна 3+d, соответственно многогранники такого вида существуют в любой размерности, начиная с пяти.

Так как $\mathcal{Z}_{P_d} = \mathcal{Z}_Q \times \mathcal{Z}_{\Delta^d} = \mathcal{Z}_Q \times S^{2d-1}$, то \mathcal{Z}_{P_d} очевидно не является связной суммой произведений сфер, но при этом $\mathcal{K}_{P_d}^1$ — хордовый граф. Действительно, $\mathcal{K}_{P_d} = \mathcal{K}_Q * \partial \Delta^d$, поэтому множество недостающих ребер $\mathcal{K}_{P_d}^1$ совпадает с множеством недостающих ребер \mathcal{K}_Q^1 , а \mathcal{K}_Q^1 имеет всего три недостающих ребра, причем никакие два из них в $\mathcal{K}_{P_d}^1$ не образуют бесхордовый 4-цикл, а наличие бесхордового цикла с бо́льшим числом вершин требует наличия хотя бы пяти недостающих рёбер.

Случай $\dim(P) = 4$ будет рассмотрен в следующем разделе.

3.2 Четырёхмерные многогранники

Вспомним, что умножение в $H^*(\mathcal{Z}_{\mathcal{K}}) = \mathcal{H}^{*,*}(\mathcal{K})$ задается отображениями (2).

Определение 3.4. Элемент $c \in \mathcal{H}^{l,J} = \widetilde{H}^l(\mathcal{K}_J)$ будем называть *разложимым*, если $c = \sum_{i=1}^p a_i \cdot b_i \neq 0$, для некоторых ненулевых $a_i \in \widetilde{H}^{r_i}(\mathcal{K}_{I_i})$, $b_i \in \widetilde{H}^{l-1-r_i}(\mathcal{K}_{J\setminus I_i})$, $0 \le r_i \le l-1$, и собственных подмножеств $I_i \subsetneq J$. Иначе элемент $c \in \mathcal{H}^{l,J}$ будем называть неразложимым.

Предложение 3.5. Класс когомологий $c \in \mathcal{H}^{l,J}$ является разложимым тогда и только тогда, когда с лежит в подкольце $\mathcal{H}^{*,*}(\mathcal{K})$, порожденном элементами групп $\mathcal{H}^{r,I}$ для $r = 0, 1, \ldots, l-1$ и собственных подмножеств $I \subsetneq J$.

Доказательство. Доказательство следует из теоремы 2.2.

Hedocmaющая грань (или минимальная не-грань) \mathcal{K} — это подмножество $I \subset [m]$ такое, что I — не симплекс \mathcal{K} , но каждое собственное подмножество I является симплексом \mathcal{K} . Каждая недостающая грань соответствует полному подкомплексу $\partial \Delta_I \subset \mathcal{K}$, где $\partial \Delta_I$ — граница симплекса Δ_I , образованного вершинами I. Недостающая грань I определяет класс когомологий, являющийся образующей в $\widetilde{H}_{|I|-2}(\mathcal{K})$, который мы также обозначаем как $\partial \Delta_I$. Мы обозначаем как $\mathrm{MF}_n(\mathcal{K})$ множество всех недостающих граней I размерности n, то есть таких, что |I|=n+1.

Следующая лемма является обобщением [4, лемма 4.4].

Лемма 3.6. Пусть $I \in \mathrm{MF}_l(\mathcal{K})$ — недостающая грань \mathcal{K} . Тогда всякий класс когомологий $c \in \mathcal{H}^{l-1,*}(\mathcal{K})$ такой, что $\langle c, \partial \Delta_I \rangle \neq 0$, является неразложимым.

Доказательство. Докажем это от противного, предположив разложимость c.

Рассмотрим комплекс \mathcal{K}' , полученный из \mathcal{K} заклеиванием всех недостающих граней размерности l, то есть $\mathrm{MF}_l(\mathcal{K}') = \varnothing$ и $\mathcal{K}^{l-1} = (\mathcal{K}')^{l-1}$. Тогда вложение $i: \mathcal{K} \hookrightarrow \mathcal{K}'$ индущирует гомоморфизм колец $i^*: \mathcal{H}^{*,*}(\mathcal{K}') \to \mathcal{H}^{*,*}(\mathcal{K})$, причём $\mathcal{H}^{r,*}(\mathcal{K}') \cong \mathcal{H}^{r,*}(\mathcal{K})$ при $r \leq l-2$. Заметим также, что $i_*(\partial \Delta_I) = 0$ для всех $I \in \mathrm{MF}_l(\mathcal{K})$.

Поэтому все элементы a_i, b_i имеют прообразы a_i', b_i' , то есть $i^*(a_i') = a_i$ и $i^*(b_i') = b_i$; при этом $i_*(\Delta_i) = 0$. Тогда рассмотрим элемент $c' := \sum_{i=1}^p a_i' \cdot b_i'$. Так как i^* — гомоморфизм колец, то $i^*(c') = c$, однако $1 = c(\Delta_i) = i^*(c')(\Delta_i) = c'(i_*(\Delta_i)) = c'(0) = 0$, получили противоречие. Соответственно, элемент c является неразложимым.

Теорема 3.7. Пусть \mathcal{K} — трёхмерная симплициальная сфера такая, что \mathcal{K}^1 — хордовый граф. Тогда $H^*(\mathcal{Z}_{\mathcal{K}}) \cong H^*(M)$, где M — связная сумма произведений пар сфер.

Доказательство. Работая в обозначениях (2) изучим, какие классы когомологий могут перемножаться нетривиально в $\mathcal{H}^{*,*} = H^*(\mathcal{Z}_{\mathcal{K}})$. Так как \mathcal{K} — трёхмерная сфера,

11

то $\mathcal{H}^{k,*} = 0$ для $k \geq 4$ и умножения вида $\mathcal{H}^{3,*} \otimes \mathcal{H}^{i,*} \to \mathcal{H}^{4+i,*}$, $\mathcal{H}^{2,*} \otimes \mathcal{H}^{2,*} \to \mathcal{H}^{5,*}$ и $\mathcal{H}^{2,*} \otimes \mathcal{H}^{1,*} \to \mathcal{H}^{4,*}$ тривиальны по соображениям размерности. Также $\mathcal{Z}_{\mathcal{K}}$ является (m+4)-мерным многообразием (см. 2.4).

Нетривиальные умножения $\mathcal{H}^{i,I}\otimes\mathcal{H}^{2-i,J}\to\mathcal{H}^{3,I\cup J}$ задаются двойственностью Пуанкаре для $\mathcal{Z}_{\mathcal{K}}$ (см. [1, предложение 4.6.6]), так как группа $\mathcal{H}^{3,I\cup J}$ нетривиальна только при $I\sqcup J=[m]$. Группы $\mathcal{H}^{i,I}$ для i=0,1 автоматически не имеют кручений, поэтому мы имеем изоморфизмы $\mathcal{H}^{i,I}\cong\mathcal{H}^{2-i,[m]\setminus I}$, задаваемые двойственностью Пуанкаре (или же изоморфизмы двойственности Александера для 3-сферы \mathcal{K} , см. [1, 3.4.11]), для всех i и $I\subset [m]$.

Докажем теперь, что умножения вида $\mathcal{H}^{0,*}\otimes\mathcal{H}^{0,*}\longrightarrow\mathcal{H}^{1,*}$ тривиальны. Пусть есть два класса когомологий $a,b\in\mathcal{H}^{0,*}$ такие, что $0\neq a\cdot b=:c\in\mathcal{H}^{1,I}$. Так как $c\neq 0$, существует цикл $\gamma\in H_1(\mathcal{K}_I)$ такой, что $\langle c,\gamma\rangle\neq 0$. Его можно представить в виде $\gamma=\lambda_1\gamma_1+\cdots+\lambda_k\gamma_k$, где γ_i — простые бесхордовые циклы в графе \mathcal{K}^1 и $\lambda_i\neq 0$. По условию \mathcal{K}^1 хордовый, поэтому $\gamma_i\in\mathrm{MF}_2(\mathcal{K})$ для всех $i=1,\ldots,k$. Так как $0\neq \langle c,\gamma\rangle=\sum_{j=1}^k\lambda_i\langle c,\gamma_i\rangle$, то $\langle c,\gamma_i\rangle\neq 0$ для некоторого i. Таким образом, c неразложим по лемме 3.6. Получили противоречие.

Наконец, докажем, что умножения вида $\mathcal{H}^{0,*}\otimes\mathcal{H}^{1,*}\longrightarrow\mathcal{H}^{2,*}$ тривиальны. Предположим, что есть нетривиальное умножение $a^0\cdot b^1=c^2\neq 0$ для некоторых классов $a^0\in\mathcal{H}^{0,I},\ b^1\in\mathcal{H}^{1,J},\ c^2\in\mathcal{H}^{2,I\cup J}$. Тогда по двойственности Пуанкаре найдётся элемент $a'\in\widetilde{H}^0(\mathcal{K}_{[m]\setminus(I\cup J)})$ такой, что $0\neq a'\cdot c^2=a'\cdot a^0\cdot b^1\in\widetilde{H}^3(\mathcal{K})$, однако в таком случае $a^0\cdot a'\neq 0$ и мы получаем нетривиальное умножение вида $\mathcal{H}^{0,I}\otimes\mathcal{H}^{0,J}\longrightarrow\mathcal{H}^{1,I\cup J}$. Противоречие.

Следовательно, все умножения в $\mathcal{H}^{*,*}(\mathcal{K})$ тривиальны, кроме тех, которые задаются двойственностью Пуанкаре. В таком случае $H^*(\mathcal{Z}_P)$ не имеет кручений и порождается элементами $\{a_i^r, b_i^{2-r}, c \mid r=0,1,\ i=1,2,\ldots,N\}$, которые умножаются по правилу $a_i^k \cdot b_j^l = \delta_{ij}\delta_{k,2-l}c$ (где $\delta_{ij}, \delta_{k,2-l}$ — символы Кронекера), то есть $H^*(\mathcal{Z}_P)$ изоморфно кольцу когомологий связной суммы произведений пар сфер, теорема доказана.

Теорема 3.7 не верна в размерностях ≥ 5 , как показывает пример 3.3. Тем не менее, можно доказать следующее:

Теорема 3.8. Пусть K — симплициальная сфера размерности n такая, что группы $\mathcal{H}^{l,*}(\mathcal{K})$ порождены недостающими гранями K для $l \leq \left[\frac{2n-1}{3}\right]$, то есть для любого ненулевого класса $c \in \mathcal{H}^{l,*}(K)$ существует $I \in \mathrm{MF}_{l+1}(K)$ такая, что $\langle c, \partial \Delta_I \rangle \neq 0$. Тогда $H^*(\mathcal{Z}_K)$ изоморфно кольцу когомологий связной суммы произведений пар сфер.

Доказательство. Как и в доказательстве теоремы 3.7, изучим, какие классы

когомологий могут перемножаться нетривиально в (2). Обозначим $q := \left[\frac{2n-1}{3}\right]$.

Так как $\mathcal{K}-n$ -мерная сфера, то $\mathcal{H}^{k,*}=0$ для k>n, и поэтому произведения вида $\mathcal{H}^{i,*}\otimes\mathcal{H}^{j,*}\to\mathcal{H}^{i+j+1,*}$ при $i+j\geq n$ тривиальны по соображениям размерности.

Нетривиальные произведения вида $\mathcal{H}^{i,I}\otimes\mathcal{H}^{n-1-i,J}\to\mathcal{H}^{n,I\cup J}$ задаются двойственностью Пуанкаре, так как группа $\mathcal{H}^{n,I\cup J}$ нетривиальна только при $I\sqcup J=[m]$. Докажем от противного, что группы $\mathcal{H}^{i,I}$ не имеют кручений для $i\leq q$. Предположим, что существует коцикл $0\neq c\in\mathcal{H}^{i,*}$ и ненулевое целое k такие, что $k\cdot c=0$. Рассмотрим представителя класса c — коцепь \tilde{c} , тогда $k\cdot \tilde{c}$ — кограница и $k\cdot \tilde{c}=d\tilde{b}$ для некоторой коцепи \tilde{b} . По условию существует $I\in \mathrm{MF}_{i+1}(\mathcal{K})$ такое, что $\langle c,\partial\Delta_I\rangle\neq 0$, поэтому

$$0 \neq k \cdot \langle c, \partial \Delta_I \rangle = \langle k \cdot \tilde{c}, \partial \Delta_I \rangle = \langle d\tilde{b}, \partial \Delta_I \rangle = \langle \tilde{b}, \partial (\partial \Delta_I) \rangle = 0,$$

и мы получаем противоречие. Таким образом, из двойственности Пуанкаре следуют изоморфизмы $\mathcal{H}^{i,I}\cong\mathcal{H}^{n-1-i,[m]\setminus I}$ для всех i, так как $2q\geq n$.

Умножения вида $\mathcal{H}^{i,*}\otimes\mathcal{H}^{j,*}\longrightarrow\mathcal{H}^{i+j+1,*}$ тривиальны для i+j< q, так как из условия и леммы 3.6 следует, что при $l\leq q$ всякий l-мерный класс когомологий неразложим.

Наконец, докажем, что все умножения вида $\mathcal{H}^{i,*}\otimes\mathcal{H}^{j,*}\longrightarrow\mathcal{H}^{i+j+1,*}$ тривиальны для $q\leq i+j\leq n-2$. Предположим, что есть классы когомологий $a\in\mathcal{H}^{i,*}$ и $b\in\mathcal{H}^{j,*}$ при $q\leq i+j\leq n-2$ такие, что $0\neq a\cdot b=:c\in\mathcal{H}^{i+j+1,*}$. Без ограничения общности предположим, что $i\leq j$. Из двойственности Пуанкаре следует, что существует элемент $a'\in\widetilde{H}^{n-i-j-2}(\mathcal{K}_{[m]\backslash(I\cup J)})$ такой, что $0\neq a'\cdot c=a'\cdot a\cdot b\in\widetilde{H}^n(\mathcal{K})$. Тогда $a\cdot a'\neq 0$ и таким образом мы получаем нетривиальное умножение вида $\mathcal{H}^{i,*}\otimes\mathcal{H}^{k,*}\longrightarrow\mathcal{H}^{i+k+1,*}$ для k:=n-i-j-2. По предположению $q\leq i+j\leq 2j$, поэтому

$$i+k=n-j-2 \le n-2-rac{q}{2} < q,$$
 так как $\frac{2}{3}(n-2) < \left[rac{2n-1}{3}
ight]$.

Следовательно, $a' \cdot a$ — умножение вида $\mathcal{H}^{i,*} \otimes \mathcal{H}^{k,*} \longrightarrow \mathcal{H}^{i+k+1,*}$, где i+k < q, и потому оно должно быть тривиально. Получили противоречие.

Итак, мы доказали, что все умножения в $\mathcal{H}^{*,*}(\mathcal{K})$ тривиальны, кроме тех, которые возникают из двойственности Пуанкаре. Таким образом, $H^*(\mathcal{Z}_P)$ изоморфно кольцу когомологий связной суммы произведений пар сфер, что завершает доказательство.

Следующая теорема обобщает результат теоремы 3.7.

Теорема 3.9. Пусть \mathcal{K} — трёхмерная симплициальная сфера. Тогда $H^*(\mathcal{Z}_{\mathcal{K}}) \cong H^*(M)$ в том и только в том случае, когда верно одно из следующих утверждений:

- (a) \mathcal{K} граница четырёхмерного октаэдра, и $\mathcal{Z}_{\mathcal{K}} \cong S^3 \times S^3 \times S^3 \times S^3$;
- (b) $\mathcal{K}^1 xop \partial o$ вый граф;
- (c) \mathcal{K}^1 имеет ровно два недостающих ребра, и они не смежны друг с другом, то есть образуют границу квадрата.

Для доказательства теоремы нам потребуется следующая лемма, тесно связанная с [4, Theorem 4.3].

Лемма 3.10. Пусть K — симплициальная сфера размерности n такая, что $H^*(\mathcal{Z}_K) \cong H^*(M)$, где M — связная сумма произведений сфер. Тогда \mathcal{K}^1 — это либо хордовый граф, либо граф c не более чем n+1 недостающими рёбрами, которые попарно не смежны друг c другом.

Более того, обозначим как I_1, \ldots, I_r все недостающие ребра \mathcal{K} . Если \mathcal{K}^1 не хордовый, то джойн полных подкомплексов $K_{I_1} * K_{I_2} * \ldots * K_{I_r}$ также является полным подкомплексом в \mathcal{K} .

Доказательство. Предположим, что в \mathcal{K}^1 есть бесхордовый цикл C на p > 4 вершинах. Тогда C — полный подкомплекс в \mathcal{K} , что противоречит лемме 4.5 [4]. Таким образом, всякий бесхордовый цикл в \mathcal{K}^1 имеет не более 4 вершин.

Если любой бесхордовый цикл в \mathcal{K}^1 имеет 3 вершины, то \mathcal{K}^1 — хордовый граф и далее доказывать нечего.

Пусть в \mathcal{K}^1 есть бесхордовый цикл C ровно с 4 вершинами. Обозначим как I_1, \ldots, I_r все недостающие ребра \mathcal{K} , и для $j=1,\ldots,r$ обозначим как a_j элемент $H^3(\mathcal{Z}_{\mathcal{K}})$, соответствующий образующей группы \mathcal{H}^{0,I_j} . Из леммы 4.6 [4] следует, что подкомплекс $\mathcal{K}_{I_i \cup I_j}$ является границей квадрата для любой пары индексов $i \neq j$, то есть все недостающие рёбра \mathcal{K} попарно несмежны друг с другом: $I_i \cap I_j = \emptyset$ для всех $i \neq j$. Отсюда следует, что $a_i \cdot a_j \neq 0$ равносильно $i \neq j$.

Заметим, что

$$H^3(\mathcal{Z}_{\mathcal{K}}) \cong \bigoplus_{|J|=2} \widetilde{H}^0(\mathcal{K}_J) = \bigoplus_{j=1}^r \widetilde{H}^0(\mathcal{K}_{I_j}) \text{ (cm. 2.2)}, \text{ поэтому } H^3(\mathcal{Z}_{\mathcal{K}}) = \mathbb{Z}\langle a_1, \dots, a_r \rangle .$$

Обозначим как $A = \bigoplus_{k=1} A^{3k}$ градуированное подкольцо $H^*(\mathcal{Z}_{\mathcal{K}})$, порождённое элементами $A^3 := H^3(\mathcal{Z}_{\mathcal{K}})$. Вспоминая предыдущий абзац, получаем, что rank $A^6 = r(r-1)/2$, так как A^6 порождено элементами $a_i \cdot a_j$.

По условию $H^*(\mathcal{Z}_{\mathcal{K}}) \cong H^*(M)$ и

$$M = S_{1,1}^{f(1,1)} \times S_{1,2}^{f(1,2)} \times \cdots \times S_{1,k(1)}^{f(1,k(1))} \# \cdots \# S_{n,1}^{f(n,1)} \times S_{n,2}^{f(n,2)} \times \cdots \times S_{n,k(n)}^{f(n,k(n))},$$

где $f(i,j) \in \mathbb{Z}^+$ — размерность соответствующей сферы $S_{i,j}^{f(i,j)} = S^{f(i,j)}$ и k(i)

обозначает количество сфер в i-м слагаемом связной суммы. $H^1(M)=0$ и $H^2(M)=0$ (см. 1), поэтому $H^3(M)\cong H^3(\mathcal{Z}_{\mathcal{K}})\cong \mathbb{Z}^r$ порождено r трёхмерными сферами $(S_{i,j}^{f(i,j)}$ с f(i,j)=3). Обозначим как s_1,\ldots,s_r образующие $H^3(M)$, соответствующие этим сферам $S_{k_1,l_1}^3,\ldots,S_{k_r,l_r}^3$, и обозначим как $B=\bigoplus_{k=1}B^{3k}$ градуированное подкольцо $H^*(M)$, порождённое элементами $B^3:=H^3(M)=\mathbb{Z}\langle s_1,\ldots,s_r\rangle$. Очевидно, что $A\cong B$ изоморфны как градуированные кольца.

Так как $s_i^2=0$ для всех $i=1,\ldots,r,$ то $\frac{r(r-1)}{2}\geq \mathrm{rank}\ B^6,$ однако $\mathrm{rank}\ B^6=\mathrm{rank}\ A^6=\frac{r(r-1)}{2}.$ Тогда для всех пар индексов $i\neq j$ выполнено $s_i\cdot s_j\neq 0$ (в противном случае $\mathrm{rank}\ B^6<\frac{r(r-1)}{2}).$ Из $s_i\cdot s_j\neq 0$ следует, что $k_i=k_j$ и сферы $S^3_{k_i,l_i}$ и $S^3_{k_j,l_j}$ находятся в одном и том же слагаемом связной суммы, и таким образом мы получаем, что $k_1=k_2=\ldots=k_r$ и все сферы $S^3_{k_1,l_1},\ldots,S^3_{k_r,l_r}$ находятся в одном и том же слагаемом связной суммы. Значит $B=\Lambda[s_1,\ldots,s_r]$ и $\mathrm{rank}\ A^{3r}=\mathrm{rank}\ B^{3r}=1,$ откуда следует $a_1\cdot a_2\cdot \cdots a_r\neq 0.$

Теперь рассмотрим джойн полных подкомплексов $L := \mathcal{K}_{I_1} * \mathcal{K}_{I_2} * \cdots * \mathcal{K}_{I_r}$, это симплициальная сфера размерности (r-1) (граница октаэдра). Так как $\mathcal{K}_{I_1 \sqcup I_2 \sqcup \cdots \sqcup I_r}$ — подкомплекс L, то $H^{r-1}(\mathcal{K}_{I_1 \sqcup \cdots \sqcup I_r}) \neq 0$ тогда и только тогда, когда $\mathcal{K}_{I_1 \sqcup \cdots \sqcup I_r} = L$. Так как $a_1 \cdot a_2 \cdot \cdots \cdot a_r \in H^{r-1}(\mathcal{K}_{I_1 \sqcup \cdots \sqcup I_r})$ — ненулевой элемент, мы получаем $L = \mathcal{K}_{I_1 \sqcup \cdots \sqcup I_r}$, и значит L — полный подкомплекс в \mathcal{K} . Отсюда также следует, что $r \leq n+1$, и таким образом утверждение леммы доказано.

Вернемся к доказательству теоремы 3.9.

Доказательство. Сначала мы докажем импликацию ⇒:

Из леммы 3.10 следует, что \mathcal{K}^1 является либо хордовым графом, либо его недостающие рёбра I_1,\ldots,I_r все попарно несмежны друг с другом, $r\leq 4$ и $L:=K_{I_1}*\cdots*K_{I_r}=\mathcal{K}_{I_1\sqcup\cdots\sqcup I_r}$ — полный подкомплекс в \mathcal{K} . Первый случай удовлетворяет условию теоремы, рассмотрим второй:

Если r=4, то \mathcal{K} — граница октаэдра.

Если r=3, то L — двумерная симплициальная сфера, и тогда $\mathcal{K}\setminus L$ несвязно (для доказательства этого несложного утверждения можно использовать двойственность Александера $\widetilde{H}_0(\mathcal{K}\setminus L)\cong\widetilde{H}^2(L)=\mathbb{Z}$ или обобщённую теорему Жордана). В таком случае должно быть ещё хотя бы одно недостающее ребро в $\mathcal{K}_{[m]\setminus (I_1\sqcup \cdots\sqcup I_r)}\simeq \mathcal{K}\setminus L$ помимо I_1,\ldots,I_r — противоречие.

Если r=2, то это случай (c) из условия теоремы.

Если r=1, то \mathcal{K}^1 является хордовым, так как любой бесхордовый цикл с более чем тремя вершинами имеет хотя бы два недостающих ребра.

Теперь докажем импликацию ←.

Если \mathcal{K}^1 хордовый, то утверждение теоремы следует из теоремы 3.7.

Если \mathcal{K}^1 имеет два недостающих ребра, образующих границу квадрата, то $\mathcal{H}^{0,*}(\mathcal{K}) = \mathbb{Z}\langle a_1, a_2 \rangle$, где a_1 и a_2 соответствуют недостающим рёбрам \mathcal{K} и $a_1 \cdot a_2 \neq 0$. Далее мы повторяем доказательство теоремы 3.7 за одним исключением: имеется одно нетривиальное умножение вида $\mathcal{H}^{0,*}(\mathcal{K}) \otimes \mathcal{H}^{0,*}(\mathcal{K}) \otimes \mathcal{H}^{1,*}(\mathcal{K}) \longrightarrow \mathcal{H}^{3,*}(\mathcal{K})$, это $a_1 \cdot a_2 \cdot b \mapsto c$, где b — двойственный по Пуанкаре элемент для $a_1 \cdot a_2$ и c — фундаментальный класс \mathcal{K} . Все остальные нетривиальные умножения в $H^*(\mathcal{Z}_{\mathcal{K}})$ возникают из двойственности Пуанкаре. Таким образом, кольцо $H^*(\mathcal{Z}_{\mathcal{K}})$ порождено элементами $\{a_1, a_2, b, c, x_i, y_i | i = 1, 2, \ldots, N\}$, где x_i, y_i лежат в $\mathcal{H}^{1,*}(\mathcal{K})$, и оно имеет следующие соотношения: $a_1 \cdot a_2 \cdot b = c$, $x_i \cdot y_i = c$ для $i = 1, 2, \ldots, N$, а все остальные произведения образующих нулевые. То есть $H^*(\mathcal{Z}_{\mathcal{K}})$ изоморфно кольцу когомологий связной суммы произведений сфер, и это завершает доказательство.

Замечание 3.11. Заметим, что если имеет место утверждение (c) теоремы 3.9, то $H^*(\mathcal{Z}_{\mathcal{K}}) \cong H^*(M)$, где M — связная сумма произведений сфер, одно из которых является произведением трёх сфер. Первый известный пример такой симплициальной сферы \mathcal{K} (которая на самом деле является границей многогранника) был представлен в работе [4].

Теорема 3.12. Пусть \mathcal{K} — трёхмерная симплициальная сфера такая, что \mathcal{K}^1 — хордовый граф. Тогда все высшие произведения Масси в $H^*(\mathcal{Z}_{\mathcal{K}})$ тривиальны.

Доказательство. Вспомним, что $\mathcal{H}^{k,*} = 0$ при k > 3 и $\mathcal{H}^{3,*} = \widetilde{H}^3(\mathcal{K}) \cong \mathbb{Z}$, так как \mathcal{K} — трёхмерная симплициальная сфера. Обозначим фундаментальный класс \mathcal{K} как $[\mathcal{K}]$.

Будем обозначать α_I^i класс когомологий из $\mathcal{H}^{i,I}$. Предположим, что существует нетривиальное произведение Масси $\langle \alpha_{I_1}^{i_1}, \dots, \alpha_{I_n}^{i_n} \rangle$. Рассмотрим $\{a_{k,l}\}_{1 \leq k \leq l \leq n}, (k,l) \neq (1,n),$ — некоторую соответствующую ему определяющую систему, где элементы $a_{k,l} \in C^{i_k+\ldots+i_l}(\mathcal{K}_{I_k\sqcup\ldots\sqcup I_l})$. Обозначим $\alpha \in \mathcal{H}^{i_1+\ldots+i_n+1,I_1\sqcup\ldots\sqcup I_n}$ класс коцикла $\sum_{r=1}^{n-1} \overline{a_{1,r}} a_{r+1,n}$, по предположению $\alpha \neq 0$.

Для упрощения дальнейших рассуждений мы без ограничения общности будем считать, что $\alpha_{I_n}^{i_n}$ — одна из образующих \mathcal{H}^{i_n,I_n} . Действительно, если существует класс $\widetilde{\alpha}_{I_n}^{i_n}$ такой, что $\alpha_{I_n}^{i_n} = t \cdot \widetilde{\alpha}_{I_n}^{i_n}$, где t — ненулевое целое, то для всех $k = n, n-1, \ldots, 1$ найдется коцепь $\widetilde{a}_{k,n}$ такая, что $a_{k,n} = t \cdot \widetilde{a}_{k,n}$, так как по теореме 3.7 в $\mathcal{H}^{*,*}(\mathcal{K})$ нет кручений. Тогда в определяющей системе $\{a_{k,l}\}$ заменим для всех $k = 1, 2, \ldots, n$ коцепи $a_{k,n}$ на $\widetilde{a}_{k,n}$ и получим определяющую систему для $(\alpha_{I_1}^{i_1}, \ldots, \alpha_{I_{n-1}}^{i_{n-1}}, \widetilde{\alpha}_{I_n}^{i_n})$, которой соответствует класс $\widetilde{\alpha}$ такой, что $\alpha = t \cdot \widetilde{\alpha}$. Поэтому произведение Масси $\langle \alpha_{I_1}^{i_1}, \ldots, \alpha_{I_{n-1}}^{i_{n-1}}, \widetilde{\alpha}_{I_n}^{i_n} \rangle$ определено и $\langle \alpha_{I_1}^{i_1}, \ldots, \alpha_{I_{n-1}}^{i_{n-1}}, \alpha_{I_n}^{i_n} \rangle = t \langle \alpha_{I_1}^{i_1}, \ldots, \alpha_{I_{n-1}}^{i_{n-1}}, \widetilde{\alpha}_{I_n}^{i_n} \rangle$.

Заметим, что $i_1+\ldots+i_n\leq 2$, так как иначе $\alpha\in\mathcal{H}^{i_1+\ldots+i_n+1,I_1\sqcup\ldots\sqcup I_n}=0.$

Рассмотрим случай $i_1 + \ldots + i_n = 2$, тогда из $\alpha \neq 0$ следует $I_1 \sqcup \ldots \sqcup I_n = [m]$ и $\alpha = r[\mathcal{K}]$, где r — некоторое ненулевое целое. По двойственности Пуанкаре для \mathcal{K} найдётся класс когомологий $\beta \in \mathcal{H}^{2-i_n,[m]\setminus I_n}$ такой, что $\beta \alpha_{I_n}^{i_n} = [\mathcal{K}]$. Тогда рассмотрим определяющую систему $\{a'_{k,l}\}$, получающуюся из $\{a_{k,l}\}$ заменой коцепи $a_{1,n-1}$ на $a'_{1,n-1} = a_{1,n-1} - r \cdot \bar{b}$, где b — представитель β . Соответствующий ей класс α' также лежит в $\langle \alpha_{I_1}^{i_1}, \ldots, \alpha_{I_n}^{i_n} \rangle$, однако

$$\sum_{r=1}^{n-1} \overline{a'_{1,r}} a'_{r+1,n} = \sum_{r=1}^{n-1} \overline{a_{1,r}} a_{r+1,n} - r \cdot b a_{n,n} ,$$

поэтому $\alpha' = \alpha - r\beta\alpha_{I_n}^{i_n} = r[\mathcal{K}] - r[\mathcal{K}] = 0$. Получили противоречие.

Рассмотрим случай $i_1+\ldots+i_n=0$. Доказательство тривиальности произведений вида $\langle \alpha_{I_1}^0,\ldots,\alpha_{I_n}^0 \rangle$ схоже с доказательством леммы 3.6. Рассмотрим комплекс \mathcal{K}' , полученный из \mathcal{K} заклеиванием всех недостающих граней размерности 2, то есть $(\mathcal{K}')^1=\mathcal{K}^1$ и $\mathrm{MF}_2(\mathcal{K}')=\varnothing$. Заметим, что $(\mathcal{K}')^1=\mathcal{K}^1$ хордовый по условию, тогда $H_1(\mathcal{K}_I')=0$ для всякого $I\subset [m]$, следовательно $\mathcal{H}^{1,*}(\mathcal{K}')=0$. Вложение $i:\mathcal{K}\hookrightarrow\mathcal{K}'$ индуцирует гомоморфизм колец $i^*:\mathcal{H}^{*,*}(\mathcal{K}')\to\mathcal{H}^{*,*}(\mathcal{K})$, причём $\mathcal{H}^{0,*}(\mathcal{K}')\cong\mathcal{H}^{0,*}(\mathcal{K})$, поэтому все классы $\alpha_{I_k}^0$ имеют прообразы $\widetilde{\alpha}_{I_k}^0$, то есть $i^*\widetilde{\alpha}_{I_k}^0=\alpha_{I_k}^0$. Более того, для всех $I\subset [m]$ группы коцепей $C^r(\mathcal{K}_I')=C^r(\mathcal{K}_I)$ в точности совпадают при r<2, поэтому все коцепи $a_{i,k}$ имеют прообразы $\widetilde{a}_{i,k}$, и $\{\widetilde{a}_{k,l}\}$ также будет определяющей системой, но уже для произведения Масси $\langle \widetilde{\alpha}_{I_1}^0,\ldots,\widetilde{\alpha}_{I_n}^0 \rangle$. Тогда $i^*\langle \widetilde{\alpha}_{I_1}^0,\ldots,\widetilde{\alpha}_{I_n}^0 \rangle = \langle \alpha_{I_1}^0,\ldots,\alpha_{I_n}^0 \rangle$ совпадают как множества, однако $\langle \widetilde{\alpha}_{I_1}^0,\ldots,\widetilde{\alpha}_{I_n}^0 \rangle$ тривиально в силу $\mathcal{H}^{1,*}(\mathcal{K}')=0$, а значит, тривиально и $\langle \alpha_{I_1}^0,\ldots,\alpha_{I_n}^0 \rangle$. Получаем противоречие.

Заметим, что таким образом мы доказали, что множество $\langle \alpha_{I_1}^0, \dots, \alpha_{I_n}^0 \rangle$ не просто содержит 0, а содержит только 0 (иначе всякий нетривиальный класс $\alpha \in \langle \alpha_{I_1}^0, \dots, \alpha_{I_n}^0 \rangle$ имел бы нетривиальный прообраз $\widetilde{\alpha} \in \langle \widetilde{\alpha}_{I_1}^0, \dots, \widetilde{\alpha}_{I_n}^0 \rangle$).

Наконец, рассмотрим случай $i_1+\ldots+i_n=1$. Обозначим j индекс такой, что $i_j=1,\,J=I_1\sqcup\ldots\sqcup I_n$ и $I_{n+1}=[m]\setminus J$. По предположению $0\neq\alpha\in\mathcal{H}^{2,J}$, поэтому найдётся класс $\alpha^0_{I_{n+1}}\in\mathcal{H}^{0,I_{n+1}}$, двойственный по Пуанкаре к α , то есть $\alpha\alpha^0_{I_{n+1}}=r[\mathcal{K}]$ для некоторого ненулевого целого r. Пусть $a_{n+1,n+1}$ — некоторый представитель класса $\alpha^0_{I_{n+1}}$, тогда найдётся коцепь $a_{n,n+1}$ такая, что $da_{n,n+1}=\overline{a}_{n,n}a_{n+1,n+1}$, так как по теореме 3.7 все умножения вида $\mathcal{H}^{0,*}\otimes\mathcal{H}^{0,*}\longrightarrow\mathcal{H}^{1,*}$ и $\mathcal{H}^{0,*}\otimes\mathcal{H}^{1,*}\longrightarrow\mathcal{H}^{2,*}$ тривиальны.

Лемма 3.13. Существуют коцепи $\{a_{k,n+1}\}_{k=2}^{n-1}$ такие, что $da_{k,n+1} = \sum_{r=k}^n \overline{a}_{k,r} a_{r+1,n+1}$.

Из этой леммы немедленно следует, что

$$d\left(\sum_{r=1}^{n-1}a_{1,r}\overline{a}_{r+1,n+1}\right) = \sum_{r=1}^{n-1}\left(\sum_{l=1}^{r-1}\overline{a}_{1,l}a_{l+1,r}\right)\overline{a}_{r+1,n+1} - \sum_{r=1}^{n-1}\overline{a}_{1,r}\left(\sum_{l=r+1}^{n}a_{r+1,l}\overline{a}_{l+1,n+1}\right) =$$

$$= \sum_{r=1}^{n-1}\sum_{l=1}^{r-1}\overline{a}_{1,l}a_{l+1,r}\overline{a}_{r+1,n+1} - \sum_{r=1}^{n-1}\sum_{l=r+1}^{n}\overline{a}_{1,r}a_{r+1,l}\overline{a}_{l+1,n+1} =$$

$$= \sum_{r=1}^{n-1}\sum_{l=1}^{r-1}\overline{a}_{1,l}a_{l+1,r}\overline{a}_{r+1,n+1} - \sum_{l=2}^{n}\sum_{r=1}^{l-1}\overline{a}_{1,r}a_{r+1,l}\overline{a}_{l+1,n+1} =$$

$$= -\sum_{r=1}^{n-1}\overline{a}_{1,r}a_{r+1,n}\overline{a}_{n+1,n+1} = \pm\left(\sum_{r=1}^{n-1}\overline{a}_{1,r}a_{r+1,n}\right)a_{n+1,n+1},$$

то есть класс $\alpha \alpha^0_{I_{n+1}} = r[\mathcal{K}]$ представлен кограницей — противоречие.

Таким образом мы по модулю леммы 3.13 доказали, что множество $\langle \alpha_{I_1}^{i_1}, \ldots, \alpha_{I_n}^{i_n} \rangle$ при $i_1 + \ldots + i_n = 1$ также не содержит нетривиальных классов. Докажем теперь лемму 3.13.

Доказательство. Докажем индукцией по $j=1,\,\ldots,\,n.$ База j=1.

Будем строить коцепи $a_{k,n+1}$ также индукцией про k. Для базы k=n коцепь $a_{n,n+1}$ уже построена. Предположим, что построены коцепи $\{a_{k,n+1}\}_{k=l}^n$. Тогда произведение Масси $\langle \alpha_{I_{l-1}}^0, \ldots, \alpha_{I_{n+1}}^0 \rangle$ определено и содержит класс коцикла $b=\sum_{r=l-1}^n \overline{a}_{l-1,r}a_{r+1,n+1}$. Выше мы доказали, что произведения Масси вида $i_1+\ldots+i_n=0$ содержат только нулевой класс, поэтому b является кограницей, и значит существует коцепь $a_{l-1,n+1}$ такая, что $da_{l-1,n+1}=b$. Это завершает шаг индукции по k, и таким образом база индукции для j=1 доказана.

Предположим, что лемма доказана при всех $j \le s$, и докажем её для j = s + 1.

Будем строить коцепи $a_{k,n+1}$ также индукцией про k. Для базы k=n коцепь $a_{n,n+1}$ уже построена. Предположим, что построены коцепи $\{a_{k,n+1}\}_{k=l}^n$, $l \geq 3$. Тогда произведение Масси $\langle \alpha_{I_{l-1}}^0, \ldots, \alpha_{I_{n+1}}^0 \rangle$ определено и содержит класс коцикла $b = \sum_{r=l-1}^n \overline{a}_{l-1,r} a_{r+1,n+1}$. Более того, для произведения Масси $\langle \alpha_{I_{l-1}}^0, \ldots, \alpha_{I_{n+1}}^0 \rangle$ лемма верна по предположению индукции (номер класса из $\mathcal{H}^{1,*}$ для него равен $s+1-(l-1)+1\leq s$), поэтому по доказанному выше оно содержит только нулевой класс, и значит b является кограницей, следовательно существует коцепь $a_{l-1,n+1}$ такая, что $da_{l-1,n+1}=b$. Это завершает шаг индукции по k и по l, и таким образом лемма доказана.

Итак, мы доказали тривиальность всех произведений Масси в $H^*(\mathcal{Z}_{\mathcal{K}}) \cong \mathcal{H}^{*,*}(\mathcal{K})$.

Следствие 3.14. Пусть \mathcal{K} — трёхмерная симплициальная сфера. Тогда \mathcal{K} минимально неголодов тогда и только тогда, когда \mathcal{K}^1 — хордовый граф.

Доказательство. Если \mathcal{K} минимально неголодов, то хордовость \mathcal{K}^1 доказывается аналогично доказательству импликации (e) \Rightarrow (d) в теореме 3.1.

Теперь предположим, что \mathcal{K}^1 хордовый. Рассмотрим вершину $v \in [m]$ и обозначим $\mathcal{K} \setminus \{v\}$ как \mathcal{K}_v . По лемме 2.1 $\mathcal{H}^{*,*}(\mathcal{K}_v)$ является подкольцом в $\mathcal{H}^{*,*}(\mathcal{K})$, причём $\mathcal{H}^{*,*}(\mathcal{K}_v)$ не содержит фундаментальный класс $[\mathcal{K}]$. Тогда в $\mathcal{H}^{*,*}(\mathcal{K}_v)$ не может быть нетривиальных умножений по теореме 3.7 и не может быть нетривиальных произведений Масси по теореме 3.12.

4 Графы

Важную роль в изучении класса трёх- и четырёхмерных многогранников P, для которых \mathcal{Z}_P гомотопически эквивалентно связной сумме произведений сфер, играло условие хордовости 1-остова \mathcal{K}_P . В данном разделе мы докажем, что для графов условие хордовости является критерием принадлежности к классу B_{Δ} .

Можно доказать, что любой хордовый граф является вполне заполняемым комплексом, поэтому достаточность условия хордовости графа Γ для $\Gamma \in B_{\Delta}$ следует из результата [13, следствие 7.5], где это доказано другими методами.

4.1 Вспомогательные утверждения и обозначения

Предложение 4.1. Для пространств с отмеченной точкой A, B имеем:

- 1°. $\Sigma A \wedge B \simeq \Sigma (A \wedge B) \simeq A * B$;
- 2° . $\Sigma(A \times B) \simeq \Sigma A \vee \Sigma B \vee (\Sigma A \wedge B)$.

Следующее утверждение является следствием куб-леммы [1, лемма 8.2.2].

Лемма 4.2 ([1, лемма 8.2.3]). Пусть A, B, C, D — топологические порстранства. Определим Q из гомотопического кодекартова квадрата

$$\begin{array}{ccc}
A \times B & \xrightarrow{\epsilon_A \times \mathrm{id}_B} & C \times B \\
\downarrow^{\mathrm{id}_A \times \epsilon_B} & & \downarrow \\
A \times D & \longrightarrow & Q
\end{array}$$

Тогда $Q \simeq (A * B) \lor (C \rtimes B) \lor (A \ltimes D)$.

Призрачной вершиной симплициального комплекса \mathcal{K} на множестве [m] называется одноэлементное множество $\{i\} \subset [m]$ такое, что $\{i\} \notin \mathcal{K}$. В данном разделе мы допускаем наличие в \mathcal{K} призрачных вершин, поэтому в случае необходимости будет дополнительно оговариваться, на каком множестве мы рассматриваем \mathcal{K} . В частности, для $I \subset [m]$ полный подкомплекс \mathcal{K}_I по умолчанию рассматривается на множестве I, однако он может быть также рассмотрен на всяком множестве $J \supset I$.

Обозначим как $[m]^i$ симплициальный комплекс $\operatorname{sk}^i(\Delta^{m-1})$ на [m], то есть i-й остов (m-1)-мерного симплекса. Согласно теоремам 4.7.7 и 4.7.5 из [1], имеется гомотопическая эквивалентность

$$\mathcal{Z}_{[m]^i} \simeq \bigvee_{k=i+2}^m (S^{i+k+1})^{\vee C_m^k C_{k-1}^{i+1}} . \tag{3}$$

Далее мы будем работать с произвольным хордовым графом Γ на множестве вершин [m], вершины которого расположены в совершенном порядке исключения. Обозначим I(m) множество соседей вершины со старшим номером m и s=|I(m)| — их количество, тогда $\mathrm{link}_{\Gamma}\{m\}$ является дизъюнктным объединением s вершин. Из определения совершенного порядка исключения следует, что $\Gamma_{I(m)}$ — клика на s вершинах, поэтому

$$\mathcal{Z}_{\operatorname{link}_{\Gamma}\{m\}} \cong \mathcal{Z}_{[s]^0} \qquad \text{if} \qquad \mathcal{Z}_{\Gamma_{I(m)}} \cong \mathcal{Z}_{[s]^1} .$$
 (4)

Заметим, что разложение $\Gamma = \Gamma_{[m-1]} \bigcup_{\mathrm{link}_{\Gamma}\{m\}} \mathrm{star}_{\Gamma}\{m\}$ задаёт кодекартов квадрат в категории симплициальных комплексов

$$\lim_{\Gamma} \{m\} \longrightarrow \operatorname{star}_{\Gamma} \{m\}
\downarrow \qquad \qquad \downarrow
\Gamma_{[m-1]} \longrightarrow \Gamma$$

Он индуцирует кодекартов квадрат полиэдральных произведений [7, диаграмма (8)]

$$\left(T^{m-1-s} \times \mathcal{Z}_{\operatorname{link}_{\Gamma}\{m\}}\right) \times S^{1} \xrightarrow{1 \times i} \left(T^{m-1-s} \times \mathcal{Z}_{\operatorname{link}_{\Gamma}\{m\}}\right) \times D^{2}$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\mathcal{Z}_{\Gamma_{[m-1]}} \times S^{1} \longrightarrow \mathcal{Z}_{\Gamma}$$
(5)

где i — вложение $S^1 \to D^2$, и $j: T^{m-1-s} \times \mathcal{Z}_{\operatorname{link}_{\Gamma}\{m\}} \to \mathcal{Z}_{\Gamma_{[m-1]}}$ — отображение моментугол комплексов, индуцированное вложением $\operatorname{link}_{\Gamma}\{m\} \to \Gamma_{[m-1]}$ симплициальных комплексов на множестве [m-1].

Лемма 4.3. Для любого хордового графа Γ на множестве [m] отображение $j:T^{m-1-s}\times\mathcal{Z}_{\mathrm{link}_{\Gamma}\{m\}}\to\mathcal{Z}_{\Gamma_{[m-1]}}$ гомотопно тривиальному.

Доказательство. Рассмотрим вложение $\mathrm{link}_{\Gamma}\{m\} \to \Gamma_{[m-1]},$ его можно представить как композицию вложений

$$\operatorname{link}_{\Gamma}\{m\} \to \Gamma_{I(m)} \to \Gamma_{[m-1]},$$

где все симплициальные комплексы мы рассматриваем на [m-1]. Тогда с учётом (4) отображение j раскладывается в композицию

$$j: T^{m-1-s} \times \mathcal{Z}_{[s]^0} \xrightarrow{1 \times f} T^{m-1-s} \times \mathcal{Z}_{[s]^1} \xrightarrow{g_1 \times g_2} \mathcal{Z}_{\Gamma_{[m-1]}}$$

где отображение $f: \mathcal{Z}_{[s]^0} \to \mathcal{Z}_{[s]^1}$ индуцированно вложением $\mathrm{link}_{\Gamma}\{m\} \to \Gamma_{I(m)},$ отображение $g_2: \mathcal{Z}_{[s]^1} \to \mathcal{Z}_{\Gamma_{I(m)}} \subset \mathcal{Z}_{\Gamma_{[m-1]}}$ индуцировано вложением $\Gamma_{I(m)} \to \Gamma_{[m-1]},$ а $g_1: T^{m-1-s} \to \mathcal{Z}_{\Gamma_{[m-1]} \setminus I(m)} \subset \mathcal{Z}_{\Gamma_{[m-1]}}$ индуцировано вложением $\{\varnothing\} \to \Gamma_{[m-1]},$ где $\{\varnothing\}$ — пустой симплициальный комплекс на множестве $[m-1] \setminus I(m)$.

Так как для любого симплициального комплекса \mathcal{K} без призрачных вершин вложение $\mathcal{Z}_{\varnothing} \to \mathcal{Z}_{\mathcal{K}}$ гомотопно ϵ — тривиальному отображению, то $g_1 \sim \epsilon$. Заметим, что при s=0 доказывать больше нечего, так как в этом случае $\mathrm{link}_{\Gamma} \ \{m\} = \{\varnothing\}$. Если же s>0, докажем, что $f\sim \epsilon$, из чего немедленно следует утверждение леммы.

Так как $\mathcal{Z}_{[s]^0} \simeq \bigvee_{\alpha} S^{n_{\alpha}} \ (n_{\alpha} \geq 3)$ гомотопически эквивалентен букету сфер (3), то f гомотопно букету отображений $f \sim \bigvee_{\alpha} f_{\alpha}$, где $f_{\alpha} : S^{n_{\alpha}} \to \mathcal{Z}_{[s]^1}$. Тогда $f \sim \epsilon$ равносильно тому, что класс $[f_{\alpha}] = 0$ в $\pi_{n_{\alpha}}(\mathcal{Z}_{[s]^1})$ для всех α . Обозначим как $i_{\alpha} : S^{n_{\alpha}} \to \mathcal{Z}_{[s]^0}$ вложение α -го слагаемого в букет $\bigvee_{\alpha} S^{n_{\alpha}}$.

Вспомним расслоение $\mathcal{Z}_{\mathcal{K}} \to (\mathbb{C}P^{\infty})^{\mathcal{K}} \to (\mathbb{C}P^{\infty})^m$ из [1, теорема 4.3.2] и рассмотрим следующую коммутативную диаграмму:

Так как $(\mathbb{C}P^{\infty})^s \simeq K(\mathbb{Z}^s, 2)$, то из длинной точной последовательности расслоения получаем, что для i=0,1 отображение $(h_i)_*:\pi_k(\mathcal{Z}_{[s]^i})\to\pi_k((\mathbb{C}P^{\infty})^{[s]^i})$ есть изоморфизм при всех $k\geq 3$. Поэтому $[f_{\alpha}]=0$ равносильно $[\widetilde{f}\circ h_0\circ i_{\alpha}]=\widetilde{f}_*[h_0\circ i_{\alpha}]=0$.

Гомотопическая группа $\pi_2((\mathbb{C}P^\infty)^{[s]^0})\cong \mathbb{Z}^s$ имеет s канонических образующих, представленных отображениями

$$\widehat{\mu}_i: S^2 \to \mathbb{C}P^{\infty} \to (\mathbb{C}P^{\infty})^{\vee s} = (\mathbb{C}P^{\infty})^{[s]^0}, \quad i = 1, \dots, s,$$

где $S^2 \to \mathbb{C}P^\infty$ — вложение двумерной клетки, а $\mathbb{C}P^\infty \to (\mathbb{C}P^\infty)^{\vee s}$ — вложение в i-е слагаемое букета.

Так как $\mathrm{sk}^1(\Delta^{n-1})$ содержит все рёбра $\{i,j\}$, то из [1, предложение 8.4.2] следует, что $\widetilde{f}_*[\widehat{\mu}_i,\widehat{\mu}_j]_w=0$ для всех $i,j=1,\ldots s$, где $[\widehat{\mu}_i,\widehat{\mu}_j]_w$ — произведение Уайтхеда. Тогда \widetilde{f}_* отображает в ноль и любые итерированные произведения Уайтхеда от образующих $\widehat{\mu}_i$. Однако из [8, лемма 6.1] для $\mathcal{Z}_{[s]^0}$ следует, что $h_0\circ i_\alpha$ есть итерированное произведение Уайтхеда от образующих $\widehat{\mu}_i$, то есть $[h_0\circ i_\alpha]\in\mathrm{Ker}\ \widetilde{f}_*$, и значит $[f_\alpha]=0$ для всех α , что и завершает доказательство.

Предложение 4.4. Γ — хордовый граф, тогда $\mathcal{Z}_{\Gamma} \simeq \Sigma^2 \mathcal{Z}_{\text{link}_{\Gamma}\{m\}} \vee (\mathcal{Z}_{\Gamma_{[m-1]}} \rtimes S^1)$, где $\text{link}_{\Gamma}\{m\}$ рассматривается как комплекс на множестве [m-1].

Доказательство. Так как отображение $i: S^1 \to D^2$ гомотопно тривиальному и по лемме 4.3 отображение j также гомотопно тривиальному, мы можем применить лемму 4.2 к диаграмме (5), откуда получаем

$$\mathcal{Z}_{\Gamma} \simeq (\mathcal{Z}_{\operatorname{link}_{\Gamma}\{m\}} * S^1) \vee (\mathcal{Z}_{\Gamma_{[m-1]}} \rtimes S^1) \vee (\mathcal{Z}_{\operatorname{link}_{\Gamma}\{m\}} \ltimes D^2)$$
.

Так как $\mathcal{Z}_{\mathrm{link}_{\Gamma}\{m\}} \ltimes D^2 \simeq pt$ и $\mathcal{Z}_{\mathrm{link}_{\Gamma}\{m\}} * S^1 \simeq \Sigma^2 \mathcal{Z}_{\mathrm{link}_{\Gamma}\{m\}}$, получаем требуемое.

Замечание 4.5. Мы выяснили, что каноническое вложение момент-уголкомплексов $f: \mathcal{Z}_{[m]^i} \to \mathcal{Z}_{[m]^{i+1}}$ гомотопно тривиальному отображению при i=0. Однако оно также будет гомотопно тривиальному при всех $i \geq 0$, что следует из работ [13, 15] (см. пример 3.5 и теорему 3.6 в [15]).

Действительно, любой скелет симплекса является сдвинутым (shifted) комплексом, а значит все сферы в букете $\mathcal{Z}_{[m]^i}$ представлены итерированными произведениями Уайтхеда вида $[[\dots [[\widehat{\mu}_{i_1},\dots,\widehat{\mu}_{i_p}],\widehat{\mu}_{j_1}],\dots,\widehat{\mu}_{j_{q-1}}],\widehat{\mu}_{j_q}],$ где $\{i_1,\dots,i_p\}$ — недостающая грань симплициального комплекса $[m]^i$, а $[\widehat{\mu}_{i_1},\dots,\widehat{\mu}_{i_p}]$ — соответствующее высшее произведение Уайтхеда. Так как $[m]^{i+1}$ содержит все недостающие грани $[m]^i$, то в обозначениях доказательства леммы 4.3 получаем $\widehat{f}_*[\widehat{\mu}_{i_1},\dots,\widehat{\mu}_{i_p}]=0$, откуда аналогичным образом следует $f\sim\epsilon$.

4.2 Хордовые графы

Теорема 4.6. Пусть Γ — некоторый граф на [m]. Тогда \mathcal{Z}_{Γ} гомотопически эквивалентен букету сфер тогда и только тогда, когда Γ хордовый.

Доказательство. (\Leftarrow) Пусть Γ — хордовый граф. Докажем утверждение теоремы индукцией по числу вершин в графе m. База индукции для графа на одной вершине очевидна.

Предположим, что утверждение верно для любого хордового графа на (m-1) вершине, и пусть Γ — хордовый граф на [m]. Тогда $\Gamma_{[m-1]}$ также хордовый (см. предложение 2.7), и по предположению индукции $\mathcal{Z}_{\Gamma_{[m-1]}}$ гомотопически эквивалентен букету сфер. Следовательно $\mathcal{Z}_{\Gamma_{[m-1]}} \rtimes S^1 \simeq \mathcal{Z}_{\Gamma_{[m-1]}} \vee \sum \mathcal{Z}_{\Gamma_{[m-1]}}$, и таким образом, применяя предложение 4.4, получаем

$$\mathcal{Z}_{\Gamma} \simeq \Sigma^2 \mathcal{Z}_{\operatorname{link}_{\Gamma}\{m\}} \vee (\mathcal{Z}_{\Gamma_{[m-1]}} \rtimes S^1) \simeq \Sigma^2 \mathcal{Z}_{\operatorname{link}_{\Gamma}\{m\}} \vee \mathcal{Z}_{\Gamma_{[m-1]}} \vee \Sigma \mathcal{Z}_{\Gamma_{[m-1]}}$$

где комплекс ${\rm link}_{\Gamma}\{m\}$ рассматривается на множестве [m-1]. Для завершения шага индукции остаётся доказать, что $\Sigma \mathcal{Z}_{{\rm link}_{\Gamma}\{m\}}$ гомотопически эквивалентно букету сфер.

Заметим, что $\Sigma \mathcal{Z}_{\mathrm{link}_{\Gamma}\{m\}} \cong \Sigma(T^{m-1-s} \times \mathcal{Z}_{[s]^0})$ согласно (4), и из предложения 4.1 следует

$$\Sigma(T^{m-1-s} \times \mathcal{Z}_{[s]^0}) \simeq \Sigma T^{m-1-s} \vee \Sigma \mathcal{Z}_{[s]^0} \vee \Sigma T^{m-1-s} \wedge \mathcal{Z}_{[s]^0} .$$

Так как $\mathcal{Z}_{[s]^0}$ — букет сфер согласно (3), а ΣT^{m-1-s} — букет сфер как надстройка над произведением сфер, то $\Sigma \mathcal{Z}_{\text{link}_{\Gamma}\{m\}}$ также гомотопически эквивалентно букету сфер, и это завершает шаг индукции.

 (\Rightarrow) Предположим теперь, что \mathcal{Z}_{Γ} гомотопически эквивалентен букету сфер, но Γ не является хордовым. Тогда выберем в Γ бесхордовый цикл C на $p \geq 4$ вершинах. Так как C является полным подкомплексом в Γ , то $H^*(\mathcal{Z}_C)$ — подкольцо в $H^*(\mathcal{Z}_{\Gamma})$ согласно лемме 2.1. Однако умножение в $H^*(\mathcal{Z}_{\Gamma})$ тривиально, в то время как умножение в $H^*(\mathcal{Z}_C)$ нетривиально согласно теореме 2.5. Полученное противоречие показывает, что \mathcal{Z}_{Γ} не может быть гомотопически эквивалентен букету сфер.

Замечание 4.7. Заметим, что для любого симплициального комплекса \mathcal{K} (уже не обязательно графа) хордовость \mathcal{K}^1 является необходимым условием для того, чтобы $\mathcal{Z}_{\mathcal{K}}$ был гомотопически эквивалентен букету сфер, так как любой бесхордовый цикл C на $p \geq 4$ вершинах в \mathcal{K}^1 всегда является полным подкомплексом в \mathcal{K} , и потому является препятствием.

Вычислим явно гомотопический тип \mathcal{Z}_{Γ} для хордового графа Γ , то есть найдём число сфер в каждой размерности. Для этого нам понадобится следующий результат.

Теорема 4.8 ([1, теорема 8.3.5]). Пусть \mathcal{K} — симплициальный комплекс на [m] и пусть (\mathbf{X}, \mathbf{A}) — последовательность пар клеточных пространств таких, что все X_i стягиваемы. Тогда имеется гомотопическая эквивалентность

$$\Sigma(\mathbf{X}, \mathbf{A})^{\mathcal{K}} \xrightarrow{\simeq} \Sigma \left(\bigvee_{J \notin \mathcal{K}} |\mathcal{K}_J| * \mathbf{A}^{\wedge J} \right)$$
 (6)

Здесь и далее $|\mathcal{K}|$ обозначает геометрическую реализацию симплициального комплекса \mathcal{K} .

Предложение 4.9. Пусть Γ — хордовый граф, тогда имеется гомотопическая эквивалентность

$$\mathcal{Z}_{\Gamma} \simeq \bigvee_{J \notin \Gamma} (S^{1+|J|})^{\vee c_J^0} \vee (S^{2+|J|})^{\vee c_J^1} ,$$

где $c_J^i := \operatorname{rank} \widetilde{H}^i(\Gamma_J)$ для i = 0, 1.

Доказательство. Применяя теорему 4.8 к нашему случаю $X_i = D^2$, $A_i = S^1$, получаем $\mathbf{A}^{\wedge J} = S^{|J|}, \ |\Gamma_J| * \mathbf{A}^{\wedge J} \simeq \Sigma |\Gamma_J| \wedge S^{|J|} \simeq \Sigma^{1+|J|} |\Gamma_J|, \ \mathbf{u}, \ \text{соответственно},$

$$\Sigma \mathcal{Z}_{\Gamma} \simeq \Sigma \left(\bigvee_{J
otin \Gamma} \Sigma^{1+|J|} |\Gamma_J| \right) \,.$$

Так как Γ — граф, то $|\Gamma_J|$ гомотопически эквивален дизъюнктному объединению букетов окружностей, причём c_J^0+1 — число компонент связности $|\Gamma_J|$, а c_J^1 — общее число окружностей в букетах $|\Gamma_J|$. Таким образом получаем $\Sigma |\Gamma_J| \simeq (S^1)^{\vee c_J^0} \vee (S^2)^{\vee c_J^1}$, откуда следует

$$\Sigma \mathcal{Z}_{\Gamma} \simeq \Sigma \bigvee_{J \notin \Gamma} (S^{1+|J|})^{\vee c_J^0} \vee (S^{2+|J|})^{\vee c_J^1}.$$

Наконец, Γ — это $xop\partial osu\check{u}$ граф, поэтому \mathcal{Z}_{Γ} — букет сфер по теореме 4.6, и значит в равенстве выше можно слева и справа снять надстройки, что завершает доказательство.

Предложение 4.10. Пусть Γ — хордовый граф, Γ^f — его флагификация, а $(\Gamma^f)^i$ — её i-й остов. Тогда имеется гомотопическая эквивалентность

$$\mathcal{Z}_{(\Gamma^f)^i} \simeq \bigvee_{J \notin \Gamma} (S^{1+|J|})^{\vee c_J^0} \vee (S^{1+i+|J|})^{\vee c_J^i} ,$$

где $c_J^j := {\rm rank} \ \widetilde{H}^j(\Gamma_J)$ для $j=0, \, i.$

Доказательство. Повторяя доказательство теоремы 4.6 с учётом замечания 4.5, получаем, что $\mathcal{Z}_{(\Gamma^f)^i}$ гомотопически эквивалентен букету сфер для всех $i \geq 0$. Так как $|\Gamma_J|$ гомотопически эквивалентен дизъюнктному объединению букетов i-мерных сфер для всех $J \subset [m]$, то доказательство данного предложения в точности повторяет доказательство предложения 4.9.

5 Благодарности

Выражаю огромную благодарность моему научному руководителю Панову Тарасу Евгеньевичу за чуткое руководство, помощь и поддержку, за постановку задач и продуктивное обсуждение. Также выражаю благодарность Бухштаберу Виктору Матвеевичу и Ероховцу Николаю Юрьевичу за внесённый ими вклад в моё образование.

Список используемой литературы

- [1] Buchstaber, Victor; Panov, Taras. *Toric Topology*. Math. Surveys Monogr., 204, Amer. Math. Soc., Providence, RI, 2015.
- [2] Fulkerson, Delbert; Gross, Oliver. *Incidence matrices and interval graphs*. Pacific J. Math 15, no. 3 (1965), 835–855.
- [3] Gitler, Samuel; López de Medrano, Santiago. *Intersections of quadrics, moment-angle manifolds and connected sums*. Geom. Topol. 17 (2013), no. 3, 1497–1534.
- [4] Fan, Feifei Fan; Chen, Liman; Ma, Jun; Wang, Xiangjun. *Moment-angle manifolds and connected sums of sphere products*. Osaka J. Math. 53 (2016), no. 1, 31–45.
- [5] McGavran, Dennis. Adjacent connected sums and torus actions. Trans. Amer. Math. Soc. 251 (1979), 235–254.
- [6] Bosio, Frédéric; Meersseman, Laurent. Real quadrics in \mathbb{C}^n , complex manifolds and convex polytopes. Acta Math. 197 (2006), no. 1, 53–127.
- [7] Panov, Taras; Theriault, Stephen. *The homotopy theory of polyhedral products associated with flag complexes*. London Mathematical Society. 155 (2019), no. 1, 206–228.
- [8] Grbić, Jelena; Panov, Taras; Theriault, Stephen; Wu, Jie. *The homotopy types of moment-angle complexes for flag complexes*. Trans. Amer. Math. Soc. 368 (2016), no. 9, 6663–6682.
- [9] Grbić, Jelena; Theriault, Stephen. *Homotopy theory in toric topology*. Russian Mathematical Surveys. 71 (2016), no. 2, 185—251.
- [10] Ероховец, Николай. k-пояса и рёберные циклы трёхмерных простых многогранников c не более чем шестиугольными гранями. Дальневост. матем. журн. 15 (2015), № 2, 197—213.

- [11] И. Ю. Лимонченко, *Кольца Стенли-Райснера обобщенных многогранников усечения и их момент-угол-многообразия*. Алгебраическая топология, выпуклые многогранники и смежные вопросы, Сборник статей. К 70-летию со дня рождения члена-корреспондента РАН Виктора Матвеевича Бухштабера, Труды МИАН, 286, МАИК «Наука/Интерпериодика», М., (2014), 207—218; Proc. Steklov Inst. Math. 286 (2014), 188—197.
- [12] Iriye, Kouyemon. On the moment-angle manifold constructed by Fan, Chen, Ma, and Wang. Osaka Journal of Mathematics. 55 (2018), no. 4.
- [13] Iriye, Kouyemon; Kishimoto, Daisuke. Fat-wedge filtration and decomposition of polyhedral producKouyemonts. Kyoto J. Math. 59 (2019), no. 1, 1–51.
- [14] Iriye, Kouyemon; Kishimoto, Daisuke. Whitehead products in moment-angle complexes Journal of the Mathematical Society of Japan. 72 (2020), no. 4, 1239–1257.
- [15] Abramyan, Semyon; Panov, Taras. *Higher Whitehead Products in Moment—Angle Complexes and Substitution of Simplicial Complexes*. Proceedings of the Steklov Institute of Mathematics. 305 (2019), no. 1, 1–21.