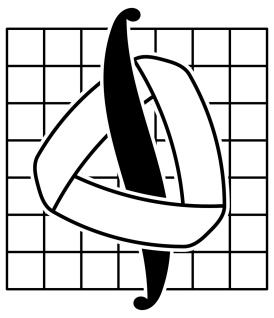
МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М. В. ЛОМОНОСОВА

Механико-математический факультет, 5 курс Кафедра высшей геометрии и топологии



Котельский Артем Дипломная работа

Минимальные и гамильтоново-минимальные подмногообразия в торической геометрии

Научный руководитель — Панов Т. Е.

1. Введение

Гамильтонова минимальность (Н-минимальность) для лагранжевых подмногообразий является симплектическим аналогом минимальности в смысле римановой метрики. Лагранжево вложение называется Н-минимальным, если вариации его объёма вдоль всех гамильтоновых векторных полей равны нулю. Это понятие было введено в работе О [9] в связи со знаменитой гипотезой Арнольда о числе неподвижных точек гамильтонова симплектоморфизам. Простейшим примером Н-минимального лагранжевого подмногообразия является координатный тор [9] $S^1_{r_1} \times \cdots \times S^1_{r_m} \subset \mathbb{C}^m$, где $S^1_{r_k}$ обозначает окружность радиуса $r_k > 0$ в k-ом координатном подпространстве \mathbb{C}^m . Другие примеры Н-минимальных лагранжевых подмногообразий в \mathbb{C}^m и $\mathbb{C}P^m$ были построены Кастро-Урбано, Хелеин-Рамон, Амарзая-Онита, среди прочих математиков.

В 2003 году А.Миронов в статье [6] описал универсальную конструкцию Н-минимальных лагранжевых вложений $N\hookrightarrow \mathbb{C}^m$ на основе пересечения вещественных квадрик Z специального вида. Те же пересечения квадрик возникают в торической геометрии как (вещественные) момент-угол многообразия. В настоящей работе, используя методы из статей Й.Донга [2] и Хсианга-Лосона [3], доказывается минимальность вложения $N\hookrightarrow Z$, а так же Н-минимальность лагранжевого вложения $N\hookrightarrow \mathbb{C}^m$ другим способом. Так же, на основе заметки Т.Панова и А.Миронова [8], приведена обобщающая результат А.Миронова конструкция, которая позволяет строить Н-минимальные лагранжевы подмногообразия в торических многообразиях.

Структура работы следующая: после введения изложены требующиеся в дальнейшем факты из теории минимальности и Н-минимальности. В третьей части кратко представлена конструкция симплектических торических многообразий. В последних двух частях изложены основные результаты.

Автор благодарен научному руководителю Т.Е.Панову за постановку задачи и поддержку в ходе написания настоящей работы.

2. Минимальность и Н-минимальность

2.1. Минимальность Пусть M и L — гладкие замкнутые многообразия, на M задана риманова метрика g. Пусть $i:L\hookrightarrow M$ — неособое вложение, то есть L является подмногообразием в M. Мы будем подразумевать, что на L задана риманова метрика, индуцированная вложением в M.

Определение. Гладкой вариацией i будем называть C^{∞} -отображение $i:[-\epsilon,+\epsilon]\times L\to M$ такое, что все отображения $i_t=i(t,\cdot):L\hookrightarrow M$ являются неособыми вложениями и $i_0=i$.

Замечание. В случае, если у L есть граница, добавляют условие $i_t(\partial L) = i(\partial L)$ для всех t.

Обозначим $i_t(y) = y_t$, $\frac{d}{dt}i_t(y) = X(y_t)$, $i_t(L) = L_t$. Далее будем говорить, что вариация i_t проходит вдоль векторного поля X.

Определение. Вложение $i:L\hookrightarrow M$ называется *минимальным*, если объём L стационарен относительно любых вариаций, то есть

$$\left. \frac{d}{dt} \right|_{t=0} Vol(L_t) = 0$$

Приведем необходимый нам в дальнейшем классический критерий минимальности. Подробности доказательства можно найти в [4].

Теорема 2.1 (Формула первой вариации).

$$\frac{d}{dt}\bigg|_{t=0} Vol(L_t) = -\int_L \langle H, X \rangle d\alpha$$

где H — векторное поле средней кривизны вложения i, X — векторное поле, вдоль которого проходит вариация, $d\alpha$ — форма объёма.

Следствие 2.2. $i:L\hookrightarrow M$ минимально тогда и только тогда, когда $H\equiv 0.$

Сформулируем и докажем важный критерий минимальности для G-инвариантных подмногообразий. Впервые он опубликован в статье Хсианга-Лосона [3]. Пусть G — компактная связная группа Ли, действующая на M изометриями. Вложение $i:L\hookrightarrow M$ называется G-инвариантным, если существует гладкое действие G:L такое, что ig=gi для всех $g\in G$. Эквивариантными вариациями G-инвариантного вложения будем называть такие вариации i_t , что $i_tg=gi_t$ для всех $g\in G$ и $t\in [-\epsilon,+\epsilon]$.

Теорема 2.3. Пусть $i: L \hookrightarrow M - G$ -инвариантное вложение. Тогда $i: L \hookrightarrow M$ минимально тогда и только тогда, когда объём L стационарен относительно всех эквивариантных вариаций.

Доказательство. В одну сторону утверждение очевидно. Докажем в другую сторону: предполагаем, что объем L стационарен относительно всех эквивариантных вариаций.

Пусть H — векторное поле средней кривизны на i(L). Поскольку H зависит только от вложения i, а i — G-инвариантно, мы имеем $g_*H = H$ для любого $g \in G$.

Пусть ϕ — гладкая, G-инвариантная функция на L. Определим вариацию i_t , $-\epsilon < 0 < \epsilon$ следующим образом:

$$i_t(y) = y_t = \exp_{y_0}[t\phi(y_0)H(y_0)].$$

Выбираем $\epsilon > 0$ достаточно малым, чтобы все i_t были неособыми вложениями. Заметим, что для любого $g \in G$ верно

$$g \circ i_t(y) = g \circ exp_{y_0}[t\phi(y_0)H(y_0)] = exp_{gy_0}[(g_*(t\phi(y_0)H(y_0))] = exp_{gy_0}[t\phi(y_0)g_*H(y_0)] = exp_{gy_0}[t\phi(gy_0)H(gy_0)] = i_t \circ g(y),$$

поскольку $gy_0 = gi(y) = i(gy)$, и $\phi - G$ -инвариантная функция. Таким образом i_t является эквивариантной вариацией.

Заметим, что так как вариация i_t проходит вдоль векторного поля ϕH (по определению), по формуле первой вариации мы имеем

$$\left. \frac{d}{dt} \right|_{t=0} Vol(L_t) = -\int_L \phi |H|^2 d\alpha.$$

Из того, что вариация эквивариантна, следует, что это выражение равно нулю. Отсюда, вкупе с произвольностью ϕ , следует, что $H \equiv 0$, и это доказывает теорему.

2.2. H-минимальность Пусть теперь на M задана симплектическая структура ω и почти комплексная структура J, согласованные с метрикой q, т.е. $\omega(\cdot, J \cdot) = q(\cdot, \cdot)$. В настоящей работе все многообразия являются кэлеровыми, для них это свойство выполняется. Векторное поле Xназывается гамильтоновым, если $i_X\omega = \omega(X,\cdot) = df$, где f — некоторая гладкая функция на M.

Определение. Лагранжево вложение $i: L \hookrightarrow M$ называется гамильтоново-Mинимальным (H-минимальным), если объём L стапионарен относительно вариаций вдоль всех гамильтоновых векторных полей.

Предложение 2.4 (формула первой вариации). Лагранжево вложение $i:L\hookrightarrow M$ Н-минимально тогда и только тогда, когда $\delta i_H\omega\equiv 0$ на L,где $\delta - \partial$ войственный по Ходжу оператор κ d на L.

Доказательство. По формуле первой вариации вдоль гамильтонового векторного поля получаем

$$\frac{d}{dt}Vol(L_t) = \int_L \langle H, X \rangle d\alpha = \int_L \langle i_H \omega, i_X \omega \rangle d\alpha.$$

Так как $i_X\omega = df$ и для любой f найдется такое векторное поле X, имеем

$$\int_{L} \langle \delta i_H \omega, f \rangle d\alpha = 0$$

для произвольной функции f. Это доказывает предложение.

Теперь приведем критерий H-минимальности для G-инвариантных лагранжевых вложений, аналогичный теореме 2.3. Этот критерий недавно сформулировал Й.Донг в статье [2].

Предложение 2.5. Пусть G: M — симплектическое $(g^*\omega = \omega)$ для всех $q \in G$) действие изометриями, где G- компактная связная группа Πu . $\Pi y cm b$ $i:L\hookrightarrow M-G$ -инвариантное лагранжево вложение. Tогда $i:L\hookrightarrow M$ H-минимально тогда и только тогда, когда объём L стационарен относительно всех эквивариантных вариаций в ∂ оль гамильтоновых векторных полей.

Доказательство. В одну сторону утверждение очевидно. Докажем в другую сторону: предполагаем, что объем L стационарен относительно всех эквивариантных вариаций вдоль гамильтоновых векторных полей.

Пусть H — векторное поле средней кривизны на i(L). Поскольку Hзависит только от вложения i, а i-G-инвариантно, мы имеем $g_*H=H$ для любого $q \in G$. Из этого следует, что $i_H \omega$ и $\delta i_H \omega$ G-инвариантны, т.к. действие является симплектическим.

Пусть ϕ — гладкая, G-инвариантная функция на L. Определим вариацию i_t , $-\epsilon < 0 < \epsilon$ следующим образом:

$$i_t(y) = y_t = \exp_{y_0}[tV]$$

где $JV = \nabla(\phi \delta i_H \omega)$, что эквивалентно $i_V \omega = d(\phi \delta i_H \omega)$. Выбираем $\epsilon > 0$ достаточно малым, чтобы все i_t были неособыми вложениями. Заметим, что для любого $g \in G$ верно

$$g \circ i_t(y) = g \circ exp_{y_0}[tV(y_0)] = exp_{gy_0}[tg_*V(y_0)]$$

= $exp_{gy_0}[tV(gy_0)] = i_t \circ g(y),$

потому что $gy_0 = gi(y) = i(gy)$, и V - G-инвариантное векторное поле. Таким образом i_t является эквивариантной вариацией.

Заметим, что так как по определению вариация i_t проходит вдоль векторного поля V, из формулы первой вариации мы имеем

$$\frac{d}{dt}\Big|_{t=0} Vol(L_t) = -\int_L \langle H, V \rangle d\alpha = -\int_L \langle i_H \omega, i_V \omega \rangle d\alpha = -\int_L \langle |\delta i_h \omega|^2 \phi \rangle d\alpha.$$

Поскольку вариация эквивариантна, это выражение равно нулю. Отсюда, вкупе с произвольностью ϕ , следует, что $\delta i_H \omega \equiv 0$, и это доказывает теорему.

- 3. Симплектическая редукция и торические многообразия
- **3.1.** Симплектическая редукция Пусть (M,ω) симплектическое многообразие, $\mathfrak{g}\cong\mathbb{R}^n$ алгебра Ли n-мерного тора T^n , $\mathfrak{g}^*\cong\mathbb{R}^n$ двойственное ему пространство. Пусть действие $\psi:T^n\to Sympl(M,\omega)$ является симплектическим, т.е. сохраняет форму ω . Любому $X\in\mathfrak{g}$ соответствует векторное поле скоростей $X^\#$ на M, порожденное действием однопараметрической подгруппы $\{exp(tX)|t\in\mathbb{R}\}\subseteq T^n$.

Определение. Действие ψ называется *гамильтоновым*, если существует отображение моментов

$$\mu: M \to \mathfrak{g}^*$$

удовлетворяющее следующему условию: для любого единичного базисного вектора $X_i \in \mathbb{R}^n \cong \mathfrak{g}$ функция μ_i является гамильтонианом для векторного поля $X_i^\#$, т.е. $i_{X_i^\#}\omega = d\mu_i$.

Замечание. Гамильтоновость векторного поля эквивалентна точности формы $i_{X_i^\#}\omega$, а симплектичность эквивалентна замкнутости этой формы. Отсюда следует, что гамильтоново действие является симплектическим, то есть сохраняет симплектическую форму.

Пример 3.1. Рассмотрим на \mathbb{C}^m стандартную симплектическую форму $\omega = -i \sum_{k=1}^m dz_k \wedge d\overline{z_k}$. Рассмотрим подгруппу по умножению $T^m = \{(z_1,\ldots,z_m) \in \mathbb{C}^m | |z_i| = 1 \ \partial ns \ scex \ 1 \leqslant i \leqslant m\} \subset \mathbb{C}^m$. Тогда действие покоординатным умножением $T^m : \mathbb{C}^m$ гамильтоново, и соответствующее отображение моментов записывается формулой

$$\mu(z_1,\ldots,z_m)=(|z_1|^2,\ldots,|z_m|^2)$$

Теорема 3.2 (Симплектическая редукция). Пусть $(M, \omega, T^n, \mu) - c$ имплектическое многообразие с гамильтоновым T^n -действием. Пусть $i: \mu^{-1}(c) \to M$ — отображение вложения, где с является регулярным
значением отображения моментов. Предположим, что отображение
моментов μ собственно и T^n действует свободно на $\mu^{-1}(c)$. Тогда:

- множество уровня $\mu^{-1}(c)$ является гладким замкнутым T^n -инвариантным подмногообразием в M,
- пространство орбит $M_{red} = \mu^{-1}(c)/T^n$ является многообразием,
- $\pi:\mu^{-1}(c)\to M_{red}$ является главным T^n -расслоением, u
- существует симплектическая форма ω_{red} на M_{red} , удовлетворяющая условию $i^*\omega = \pi^*\omega$.

Замечание. Если M компактно, то отображение μ собственно.

Замечание. Теорема о симплектической редукции верна и для произвольного случая (M, ω, G, μ) гамильтонового действия компактной связной группы Ли G, определение которого мы не давали. Доказательство см. в [5].

3.2. Момент-угол многообразия

Конструкция 3.3. Рассмотрим непустой многогранник, заданный пересечением полуплоскостей

$$P = P(A, \boldsymbol{b}) = \{ \boldsymbol{x} \in \mathbb{R}^n : \langle \boldsymbol{a}_i, \boldsymbol{x} \rangle + b_i \geqslant 0, \quad 1 \leqslant i \leqslant m \}$$

Отображение

$$i_{A,\boldsymbol{b}}: \mathbb{R}^n \to \mathbb{R}^m, \quad i_{A,\boldsymbol{b}}(\boldsymbol{x}) = A^t \boldsymbol{x} + \boldsymbol{b} = (\langle \boldsymbol{a}_1, \boldsymbol{x} \rangle + b_1, \dots, \langle \boldsymbol{a}_m, \boldsymbol{x} \rangle + b_m)^t$$

вкладывает P в \mathbb{R}^m_{\geqslant} . Момент-угол многообразием называется пространство $Z_{A,b}$, определяющееся коммутативной диаграммой

$$Z_{A,\mathbf{b}} \xrightarrow{i_Z} \mathbb{C}^m$$

$$\downarrow \qquad \qquad \downarrow^{\mu}$$

$$P \xrightarrow{i_{A,\mathbf{b}}} \mathbb{R}^m_{\geqslant}$$

где $\mu(z_1,\ldots,z_m)=(|z_1|^2,\ldots,|z_m|^2)$ — отображение моментов стандартного координатного действия тора $T^m=\{(e^{2\pi i\phi_1},\ldots,e^{2\pi i\phi_m})\in\mathbb{C}^m|\ \phi_i\in\mathbb{R},\ 1\leqslant j\leqslant m\}$ на $\mathbb{C}^m.$

Рассмотрим матрицу Γ размера (m-n)*m, чьи строки образуют базис пространства $\{ \boldsymbol{y} \in \mathbb{R}^m : \boldsymbol{y}A^t = 0 \}$. Тогда имеем $rk\Gamma = (m-n)$ и $\Gamma A^t = 0$. Множество столбцов $(\gamma_1, \ldots, \gamma_m)$ матрицы Γ называется двойственной по Гейлу конфигурацией к множеству столбцов $(\boldsymbol{a}_1, \ldots, \boldsymbol{a}_m)$ матрицы A. Заметим, что теперь образ $i_{A,\boldsymbol{b}}(\mathbb{R}^n)$ можно задать уравнением $\Gamma \boldsymbol{x} = \Gamma \boldsymbol{b}, \boldsymbol{x} \in \mathbb{R}^m$. Тогда образ $Z_{A,\boldsymbol{b}}$ в \mathbb{C}^m при отображении i_Z можно задать пересечением вещественных квадрик:

$$Z_{\Gamma} = i_Z(Z_{A,b}) = \{ z = (z_1, \dots, z_m) \in \mathbb{C}^m : \sum_{k=1}^m \gamma_{jk} |z_k|^2 = \sum_{k=1}^m \gamma_{jk} b_k, \quad 1 \leqslant j \leqslant m-n \}$$

Пример 3.4. Пусть P — треугольник, заданный уравнениями

$$\begin{cases} x_1 \geqslant 0 \\ x_2 \geqslant 0 \\ 1 - x_1 - y_2 \geqslant 0 \end{cases}$$

Тогда отображение $i_{A,\mathbf{b}}$ задается формулой $i_{A,\mathbf{b}}(x_1,x_2)=(x_1,x_2,1-x_1-y_2)$ и $i_{A,\mathbf{b}}(P)=\mathbb{R}^3_>\cap\{y_1+y_2+y_3=1\}$. Получаем, что

$$Z_{\Gamma} = \{(z_1, z_2, z_3) \in \mathbb{C}^3 | z_1^2 + z_2^2 + z_3^2 = 1\} \cong S^5,$$

 $R_{\Gamma} = \{(y_1, y_2, y_3) \in \mathbb{R}^3 | y_1^2 + y_2^2 + y_3^2 = 1\} \cong S^2.$

Момент-угол многообразие является неособым гладким компактным многообразием тогда и только тогда, когда пересечение квадрик невырождено, что эквивалентно простоте многогранника P (т.е. все гиперграни, встречающиеся в одной вершине, должны находится в общем положении, что равносильно тому, что их ровно n). Компактность следует из ограниченности многогранника. Далее мы будем считать, что P — непустой простой многогранник, и использовать обозначения Z_{Γ} и Z_{P} для многообразия $Z_{A,b}$.

Аналогично определяется вещественное момент-угол многообразие из коммутативной диаграммы

$$R_{A,\mathbf{b}} \xrightarrow{i_R} \mathbb{R}^m$$

$$\downarrow \qquad \qquad \downarrow^{\mu}$$

$$P \xrightarrow{i_{A,\mathbf{b}}} \mathbb{R}^m_{\geqslant}$$

где $\mu(y_1,\ldots,y_m)=(|y_1|^2,\ldots,|y_m|^2)$ — ограничение отображения моментов. Так же как и комплексном случае, можно представить $R_{A,b}$ в виде пересечения квадрик:

$$R_{\Gamma} = \{ u = (u_1, \dots, u_m) \in \mathbb{R}^m : \sum_{k=1}^m \gamma_{jk} u_k^2 = \sum_{k=1}^m \gamma_{jk} b_k, \quad 1 \leqslant j \leqslant m - n \}$$

Заметим, что есть естественное вложение $R_{\Gamma} \hookrightarrow Z_{\Gamma}$. Так же заметим существование действий $T^m: Z_{\Gamma}$ и $\mathbb{Z}_2^m: R_{\Gamma}$, индуцированных действиями $T^m: \mathbb{C}^m$ и $\mathbb{Z}_2^m: \mathbb{C}^m$. Пространство орбит в обоих случаях эквивалентно многограннику: $Z_{\Gamma}/T^m = R_{\Gamma}/\mathbb{Z}_2^m \cong P$.

3.3. Симплектические торические многообразия Далее мы будем предполагать, что на \mathbb{C}^m задана стандартная симплектическая форма $\omega = -i \sum_{k=1}^m dz_k \wedge d\overline{z_k}$. Напомним, что действие $T^m : \mathbb{C}^m$ гамильтоново, и соответствующее отображение моментов записывается формулой $\mu(z_1,\ldots,z_m)=(|z_1|^2,\ldots,|z_m|^2)$.

Пусть векторы a_1,\ldots,a_m образуют решетку $N=\mathbb{Z}\langle a_1,\ldots,a_m\rangle\subset\mathbb{R}^n$. Это условие эквивалентно тому, что столбцы γ_1,\ldots,γ_m матрицы Γ образуют решетку $L=\mathbb{Z}\langle \gamma_1,\ldots,\gamma_m\rangle\subset\mathbb{R}^{m-n}$ (см. [1]). Так как $\mathbb{R}\langle a_1,\ldots,a_m\rangle=\mathbb{R}^n$, мы имеем $N\cong\mathbb{Z}^n$ и $L\cong\mathbb{Z}^{m-n}$. Рассмотрим следующую подгруппу в T^m :

$$T_{\Gamma} = \mathbb{R}^{m-n}/L^* = \{(e^{2\pi i(\gamma_1,\phi)}, \dots, e^{2\pi i(\gamma_m,\phi)}) \in T^m\} \cong T^{m-n}$$

где $L^* = \{\lambda^* \in \mathbb{R}^{m-n} : (\lambda^*, \lambda) \in \mathbb{Z} \$ для всех $\lambda \in L\}$ — двойственная решетка. Аналогично для R_{Γ} определим группу $D_{\Gamma} = \frac{1}{2}L^*/L^* \cong (\mathbb{Z}/2)^{m-n}$, она естественно вкладывается как подгруппа в T_{Γ} . Действие

 $T_{\Gamma} \subset T^m$ на \mathbb{C}^m так же гамильтоново, и соответствующее отображение моментов является композицией

$$\mu_{\Gamma}: \mathbb{C}^m \to \mathbb{R}^m \to \mathfrak{t}_{\Gamma}^*$$

где $\mathbb{R}^m \to \mathfrak{t}_{\Gamma}^*$ — отображение двойственных алгебр Ли, соответствующее вложению $T_{\Gamma} \hookrightarrow T^m$. Отображение μ_{Γ} во второй части композиции сопоставляет i-ому базисному вектору $e_i \in \mathbb{R}^m$ вектор $\gamma_i \in \mathfrak{t}_{\Gamma}^* \cong \mathbb{R}^{m-n}$. Поэтому μ_{Γ} является композицией стандартного отображения моментов μ и умножения на матрицу Γ :

$$\mu_{\Gamma}(z_1,\ldots,z_m) = (\sum_{k=1}^m \gamma_{1k}|z_k|^2,\ldots,\sum_{k=1}^m \gamma_{(m-n)k}|z_k|^2).$$

Множество уровня $\mu_{\Gamma}^{-1}(\Gamma \boldsymbol{b})$ есть в точности момент-угол многообразие Z_{Γ} . Далее мы будем предполагать, что T_{Γ} действует свободно на Z_{Γ} , что эквивалентно условию дельзантовости многогранника P, т.е. для каждой вершины i нормальные вектора соответствующих примыкающих гиперграней образуют базис решетки, которую образуют все нормальные вектора: $\mathbb{Z}\langle \boldsymbol{a}_{i_1},\ldots,\boldsymbol{a}_{i_n}\rangle=\mathbb{Z}\langle \boldsymbol{a}_{1},\ldots,\boldsymbol{a}_{m}\rangle=N$.

Теорема 3.5. Пусть $P = P(A, \mathbf{b})$ является дельзантовым многогранником, $\Gamma = (\gamma_1, ... \gamma_m)$ — соответствующая двойственная по Гейлу конфигурация векторов в \mathbb{R}^{m-n} , которая определяет момент-угол многообразие $Z_P = Z_{\Gamma} = Z_{A,\mathbf{b}}$. Тогда:

- Γb является регулярным значением собственного отображения моментов $\mu_{\Gamma}: \mathbb{C}^m \to \mathfrak{t}_{\Gamma}^* \cong \mathbb{R}^{m-n},$
- Z_P является регулярным множеством уровня $\mu_{\Gamma}^{-1}(\Gamma \boldsymbol{b}),$
- \bullet действие T_{Γ} на Z_{P} свободно.

Замечание. Условия для применения симплектической редукции следующие: отображение моментов должно быть собственным, действие свободным, а множество уровня регулярным. Эти условия соответственно эквивалентны следующим: ограниченности Z_{Γ} , дельзантовости P, и неособости многообразия Z_{Γ} .

Применяя симплектическую редукцию, мы получаем фактормногообразие $Z_P/T_\Gamma = V_P$. Оно канонически изоморфно торическому многообразию V_{Σ_P} , которое соответствует нормальному вееру Σ_P многогранника P (см.[1]). Эти многообразия называются симплектическими торическими многообразиями.

Алгебраическое многообразие V_{Σ_P} проективно. Редуцированная симплектическая форма ω_{red} и метрика, индуцированная субмерсией $Z_P \to V_P$, эквивалентны симплектической форме, индуцированной вложением в проективное пространство, и метрике, возникающей из алгебраической структуры. Отметим также замечательный факт о том, что множество дельзантовых многогранников находится во взаимно-однозначном соответствии с множеством симплектических торических многообразий (см. [1]).

Важным замечанием является то, что R_P проецируется со слоем D_Γ на вещественное торическое многообразие U_P (вещественные точки в

комплексных картах V_P). Ключевые факты этой части можно проиллюстрировать следующей коммутативной диаграммой (1), где слоями проекций π и r являются T_{Γ} и D_{Γ} соответственно.

$$R_{P} & \longrightarrow Z_{P} & \stackrel{i}{\longrightarrow} \mathbb{C}^{m}$$

$$\downarrow^{r} & \downarrow^{\pi}$$

$$U_{P} & \longrightarrow V_{P}$$

$$(1)$$

4. Минимальные подмногообразия в момент-угол многообразии

Зафиксирует обозначения как на диаграмме (1).

Предложение 4.1. Вещественное торическое многообразие U_P минимально в V_P .

Доказательство. Вещественное торическое многообразие U_P является множеством неподвижных точек при изометричной инволюции $\sigma: V_P$, индуцированной комплексным сопряжением на $Z_P \subset \mathbb{C}^m$. Отсюда нетрудно понять, что U_P вполне геодезично в V_P , т.е. все геодезические, лежащие в U_P , являются геодезическими и в V_P . Поэтому U_P минимально в V_P , так как геодезичность вполне эквивалентна обнулению всей квадратичной формы, а минимальность эквивалентна обнулению её следа, то есть вектора средней кривизны (подробности см. в [4]).

Определим функцию $Vo: V_P \to \mathbb{R}$ как объём орбиты: $Vo(x) = Vol(\pi^{-1}(x))$.

Предложение 4.2. Вещественное торическое многообразие U_P минимально в V_P относительно метрики $\tilde{g} = V o^{2/n} g$.

Доказательство. Инволюция $\sigma: V_P$, индуцированная комплексным сопряжением, сохраняет функцию Vo. Это следует из того, что объём орбиты зависит только от модулей координат точек в этой орбите. При равенстве модулей одна орбита переводится в другую покоординатным умножением на единичные по модулю числа, а значит объём одинаковый. В нашем случае эти числа равны $\overline{z_i}/z_i$.

$$Vo(x) = Vol(\pi^{-1}(x)) = Vol(T_{\Gamma}(z_1, \dots, z_m)) = Vol(|z_1|, \dots, |z_m|) =$$

= $Vol(|\overline{z_1}|, \dots, |\overline{z_m}|) = Vol(T_{\Gamma}(\overline{z_1}, \dots, \overline{z_m})) = Vol(\pi^{-1}(\sigma x)) = Vo(\sigma x).$

Поэтому σ — изометричная инволюция не только относительно метрики g, но и относительно метрики $\tilde{g}=Vo^{2/n}g$. Это означает, работают те же доводы для доказательства, что и в предыдущем предложении.

Так же нам понадобится обобщённая теорема Нётер.

Теорема 4.3. Пусть (M, ω, T, μ) — симплектическое многообразие с гамильтоновым действием тора. Пусть X — гамильтоново T-инвариантное векторное поле. Тогда отображение моментов μ сохранятся вдоль траекторий векторного поля X.

Доказательство. Доказательство представляет собой цепочку равенств:

$$X(\mu_i) = i_X d\mu_i = i_X i_{X_i^{\#}} \omega = -i_{X_i^{\#}} i_X \omega = -i_{X_i^{\#}} df = -X_i^{\#}(f) = 0$$

так как X является T-инвариантным, и следовательно $f=i_X\omega$ является T-инвариантным. \square

Замечание. Это утверждение верно и для произвольного случая (M, ω, G, μ) гамильтонового действия компактной связной группы Ли G, определение которого мы не давали.

Рассмотрим $N = \pi^{-1}(U_P) \cong R_P \times_{D_\Gamma} T_\Gamma$ — подмногообразие в $Z_P \subset \mathbb{C}^m$.

Теорема А. Подмногообразие N минимально в Z_P .

Доказательство. Так как действие $T_{\Gamma}: Z_{P}$ свободно и $Z_{P}/T_{\Gamma} = V_{P},$ существует биекция

$$\left\{ \begin{array}{l} T_{\Gamma} - \textit{инвариантные} \quad \textit{горизонтальныe} \\ \textit{векторныe} \quad \textit{поля} \quad \textit{на} \quad Z_{P} \end{array} \right\} \longleftrightarrow \left\{ \begin{array}{l} \textit{векторныe} \\ \textit{поля} \quad \textit{на} \quad V_{P} \end{array} \right\}$$

Пусть i_t-T_Γ -инвариантная вариация естественного вложения $i:N\hookrightarrow Z_P$. Из определения \tilde{g} следует

$$Vol(N_t, g) = Vol(\pi(N_t), \tilde{g}).$$

Сравнивая T_{Γ} -инвариантные вариации N в Z_P и вариации $\pi(N) = U_P$ в V_P мы получаем по предложению 4.2, что объём N стационарен относительно T_{Γ} -инвариантных вариаций. Из теоремы 2.3 следует минимальность N.

Теорема В. Многообразие N лагранжево H-минимально вкладывается в \mathbb{C}^m .

Доказательство. Вложение очевидно строится так: $N \hookrightarrow Z_P \hookrightarrow \mathbb{C}^m$.

Докажем сначала лагранжевость. Так как $N=\pi^{-1}(U_P)$, для любой точки $z\in N$ верно разложение касательного пространства $T_xN=T_{R_\Gamma}\oplus T_{T_\Gamma}$ на касательные пространства вдоль действия тора и вдоль вещественного момент-угол многообразия. Каноническая симплектическая форма $\omega=-i\sum_{k=1}^m dz_k\wedge d\overline{z_k}$ на \mathbb{C}^m обнуляется на пространстве T_{R_Γ} , так как в $z\cdot T_{R_\Gamma}$ содержатся только вещественные вектора (касательные к R_Γ) для некоторого $z\in T_\Gamma$. Пусть теперь $X_i\in T_{T_\Gamma}$ и $Y\in T_xN$. Тогда

$$\omega(X_i, Y) = i_{X_i}\omega(Y) = d\mu_i(Y) = Y(\mu_i) = 0,$$

потому что $Y \in T_xN$, а значит сохраняет μ (так как $N \subset Z_{\Gamma} = \mu^{-1}(\Gamma \boldsymbol{b})$). Отсюда следует, что ω обнуляется на всем $T_xN = T_{R_{\Gamma}} \oplus T_{T_{\Gamma}}$, а значит N лагранжево.

Теперь докажем Н-минимальность. По предложению 2.5 мы можем рассматривать только T_{Γ} -инвариантные гамильтоновы вариации. Отсюда (здесь важно условия гамильтоновости), по теореме 4.3, следует, что T_{Γ} -инвариантные гамильтоновы вариации подмногообразия $N \subset Z_{\Gamma} \subset \mathbb{C}^m$ проходят внутри Z_{Γ} . А то, что объём N стационарен относительно всех T_{Γ} -инвариантных вариаций внутри Z_{Γ} мы доказали в предыдущей теореме. Теорема доказана.

Пример 4.4 (Одна квадрика). Пусть m-n=1, то есть Z_{Γ} задается одним уравнением

$$\gamma_1|z_1|^2 + \ldots + \gamma_m|z_m|^2 = c$$

Из компактности следует, что все коэффициенты положительны. Свободность действия $T_{\Gamma}: Z_{\Gamma}$ (дельзантовость первоначального многогранника) эквивалентна следующему условию: для любой точки $\mathbf{z} \in Z_{\Gamma}$ выполняется равенство $\mathbb{Z}\langle \gamma_{i_1}, \dots, \gamma_{i_k} \rangle = \mathbb{Z}\langle \gamma_1, \dots, \gamma_k \rangle = L$, где i_k — все ненулевые координаты точки $\mathbf{z} \in Z_{\Gamma}$ (см. [7]). Поскольку Z_{Γ} в нашем случае содержит точки с лишь одной ненулевой координатой, любой γ_i должен порождать ту же решетку, что и весь набор $\gamma_1, \dots, \gamma_m$. Значит $\gamma_1 = \dots = \gamma_m$, и Z_{Γ} является сферой S^{2m-1} с радиусом $\sqrt{a} = \sqrt{\frac{c}{\gamma_1}}$, заданной уравнением

$$|z_1|^2 + \ldots + |z_m|^2 = a$$

Многообразие $R_{\Gamma} \subset Z_{\Gamma}$ является сферой в вещественной части: $S^{m-1} = \{(r_1,\ldots,r_m)\in\mathbb{C}^m|r_i\in\mathbb{R}\quad 1\leqslant i\leqslant m,\quad r_1^2+\ldots+r_m^2=a\}$. Чтобы получить $N=R_{\Gamma}\times_{D_{\Gamma}}T_{\Gamma}$, нужно «разнести» сферу $R_{\Gamma}\cong S^{m-1}$ по окружности $T_{\Gamma}=\{(e^{2\pi i\phi}),\ldots,e^{2\pi i\phi})\in\mathbb{C}^m\}\cong S^1$ и диагонально профакторизовать по антиподальной инволюции D_{Γ} .

Таким образом, в зависимости от того, меняет ли инволюция ориентацию на S^{m-1} или нет (то есть четным или нечетным является m), мы получаем многообразие

$$N(m) \cong S^{m-1} \times S^1$$
 npu m – четном $N(m) \cong K^m$ npu m – нечетном

Оно минимально вкладывается в S^{2m-1} и лагранжево H-минимально в \mathbb{C}^m .

Пример 4.5 (Две квадрики). Пусть m-n=2, тогда Z_{Γ} задается уравнениями

$$\begin{cases} \gamma_{11}|z_1|^2 + \dots + \gamma_{m1}|z_m|^2 = c \\ \gamma_{12}|z_1|^2 + \dots + \gamma_{m2}|z_m|^2 = 0 \end{cases}$$

где $\gamma_{k1}>0,\,c>0,\,\gamma_{j2}>0,\,\gamma_{i2}<0$ для $1\leqslant k\leqslant m,\,1\leqslant j\leqslant p,\,p+1\leqslant i\leqslant m,$ что следует из стандартного вида пересечения квадрик, см. [7]. Видно, что второе уравнение задает конус над эллипсоидами размерностей 2p-1 и 2q-1. Пересекая его с эллипсоидом размерности 2m-1, который задает первое уравнение, получаем, что $Z_{\Gamma}\cong S^{2p-1}\times S^{2q-1}$ и $R_{\Gamma}\cong S^{p-1}\times S^{q-1}$. Отметим, что соответствующий им многогранник комбинаторно эквивалентен произведению симплексов $\Delta^{p-1}\times\Delta^{q-1}$.

Топологический тип многообразия N определяется тремя числами p,q и l, где p+q=m и $0\leqslant l\leqslant p$. Его можно описать как тотальное пространство расслоения

$$N_l(p,q) \xrightarrow{N(q)} N(p)$$

топология которого зависит от l. Так же оно является тотальным пространством расслоения $N \to T^2$ со слоем $R_{\Gamma} \cong S^{p-1} \times S^{q-1}$, а так же

расслоения $N \to U_{\Gamma}$ со слоем T^2 . Подробности классификации $N_l(p,q)$ и построения расслоений можно прочитать в [7].

Многообразие N минимально вкладывается в $Z_{\Gamma}\cong S^{2p-1}\times S^{2q-1}$, и лагранжево H-минимально вкладывается в \mathbb{C}^m . При p=q=2 и l=1 мы получаем минимальное вложение $N_1(2,2)\hookrightarrow Z_{\Gamma}\cong S^3\times S^3$, где $N_1(2,2)\to T^2$ — нетривиальное расслоение со слоем T^2 . При этом в $Z_{\Gamma}\cong S^3\times S^3$ минимально вкладывается и тривиальное расслоение $S^4=T^2\times T^2=N_0(p,q)$. Этот факт является следствием случая одной квадрики, где мы построили минимальное вложение $T^2\hookrightarrow S^3$.

5. Лагранжевы H-минимальные подмногообразия в торических многообразиях

Рассмотрим два множества квадрик Z_{Γ} и Z_{Δ} :

$$Z_{\Gamma} = \{ \boldsymbol{z} = (z_1, \dots, z_m) \in \mathbb{C}^m : \sum_{k=1}^m \gamma_{jk} |z_k|^2 = c_j, \quad 1 \leqslant j \leqslant m - n \}$$

$$Z_{\Delta} = \{ \boldsymbol{z} = (z_1, \dots, z_m) \in \mathbb{C}^m : \sum_{k=1}^m \delta_{jk} |z_k|^2 = d_j, \quad 1 \leqslant j \leqslant m - l \}$$

такие, что Z_{Γ}, Z_{Δ} и $Z_{\Gamma} \cap Z_{\Delta}$ — невырожденные рациональные пересечения квадрик, то есть, если брать на примере Z_{Γ} , должны выполняться условия:

- $a)c \in R_{\geqslant}\langle \gamma_1, \ldots, \gamma_m \rangle$
- б)если $c \in R_{\geqslant}\langle \gamma_{i_1}, \ldots, \gamma_{i_k} \rangle$, то $k \geqslant m-n$
- с) векторы $\gamma_1, \ldots, \gamma_m$ образуют решетку L максимального ранга в \mathbb{R}^{m-n} Так же предположим, что многогранники, соответствующие пересечениям квадрик Z_{Γ}, Z_{Δ} и $Z_{\Gamma} \cap Z_{\Delta}$, дельзантовы (соответствие в обратную сторону существует, см. [7]).

Группы T_{Δ} и D_{Δ} определяются аналогично группам T_{Γ} и D_{Γ} . Идея состоит в том, чтобы профакторизовать все по одному набору квадрик, то есть по T_{Γ} , а дальше с помощью другого набора Z_{Δ} построить конструкцию, аналогичную диаграмме (1).

Обозначим $Z_\Gamma/T_\Gamma=V_\Gamma$ — торическое многообразие, и заметим что индуцированное действие $T_\Delta:V_\Gamma$ будет гамильтоновым. Отображение моментов $\mu_\Delta:V_\Gamma\to\mathbb{R}^{m-l}$ задается формулой

$$\mu_{\Delta}(x) = \Delta \cdot \mu(\pi^{-1}(x)) = \Delta \cdot (|z_1|^2, \dots, |z_m|^2)^t$$

где $\pi^{-1}(x)=(z_1,\ldots,z_m)$ — любой прообраз точки x при проекции $\pi:Z_{\Gamma}\to V_{\Gamma}$ (модули координат у любого прообраза одинаковые, так как слоем проекции является T_{Γ}). Теперь применим конструкцию симплектической редукции к действию $T_{\Delta}:V_{\Gamma}$. Рассмотрим следующую коммутативную диаграмму (2):

$$U_{\Gamma} \cap R_{\Delta} \longleftarrow V_{\Gamma} \cap Z_{\Delta} \stackrel{i}{\longleftarrow} V_{\Gamma}$$

$$\downarrow^{\tilde{r}} \qquad \qquad \downarrow^{\tilde{\pi}}$$

$$U_{\Gamma\Delta} \longleftarrow V_{\Gamma\Delta}$$

$$(2)$$

где слоями проекций $\tilde{\pi}$ и \tilde{r} являются T_{Δ} и D_{Δ} соответственно, и

$$\begin{split} V_{\Gamma} \cap Z_{\Delta} &= (Z_{\Gamma} \cap Z_{\Delta})/T_{\Gamma}, \quad V_{\Gamma\Delta} &= (Z_{\Gamma} \cap Z_{\Delta})/(T_{\Gamma} \times T_{\Delta}), \\ U_{\Gamma} \cap R_{\Delta} &= (R_{\Gamma} \cap R_{\Delta})/D_{\Gamma}, \quad U_{\Gamma\Delta} &= (R_{\Gamma} \cap R_{\Delta})/(D_{\Gamma} \times D_{\Delta}). \end{split}$$

Рассмотрим $\tilde{N}=\tilde{\pi}^{-1}(U_{\Gamma\Delta})\cong (U_{\Gamma}\cap R_{\Delta})\times_{D_{\Delta}}T_{\Delta}$ — подмногообразие в $V_{\Gamma}\cap Z_{\Delta}\subset V_{\Gamma}$. Совершенно аналогично теоремам A и B мы получаем:

Теорема С. Многообразие \tilde{N} минимально вкладывается в $V_{\Gamma} \cap Z_{\Delta}$ и лагранжево H-минимально вкладывается в торическое многообразие V_{Γ} .

Пример 5.1.

- 1. Если m-n=0, т.е. $Z_{\Gamma}=\emptyset$, то $V_{\Gamma}=\mathbb{C}^m$ и мы получаем исходную конструкцию подмногообразий N, минимальных в Z_{Δ} и H-минимальных лагранжевых в \mathbb{C}^m .
- 2. Если m-l=0, т.е. $Z_{\Delta}=\emptyset$, то \tilde{N} является вещественным торическим многообразием U_{Γ} , которое минимально (вполне геодезично) в Γ .
- многообразием U_{Γ} , которое минимально (вполне геодезично) в Γ . 3. Если m-n=1, т.е. $Z_{\Gamma}\cong S^{2m-1}$, то мы получаем Н-минимальное лагранжево подмногообразие \tilde{N} в $V_{\Gamma}=\mathbb{C}P^{m-1}$. Эта серия включает в себя многие раннее построенные семейства проективных примеров. Так же \tilde{N} минимально вкладывается в проективное подмногообразие $\mathbb{C}P^{m-1}\cap Z_{\Delta}$.

Список литературы

- [1] В. М. Бухштабер, Т. Е. Панов, Toric topology, arXiv:1210.2368.
- Y. Dong, Hamiltonian-minimal Lagrangian submanifolds in Kaehler manifolds with symmetries, Nonlinear Analysis: Theory, Methods and Applications 67 (2007), 865–882.
- [3] W.Y. Hsiang, H.B. Lawson *Minimal submanifolds of low-cohomogeneity*, J. Differential Geom. 5 (1971) 1–38.
- [4] B. Lawson, Lectures on Minimal Submanifolds, vol.1 Berkeley: Publish or Perish 1980.
- J. Marsden, A. Weinstein, Reduction of symplectic manifolds with symmetry, Rep. Mathematical Phys. 5 (1974), 121-130.
- [6] А. Е. Миронов, О новых примерах гамильтоново-минимальных и минимальных лагранжевых подмногообразий в \mathbb{C}^n и $\mathbb{C}P^n$, Матем. сб., 2004, том 195, номер 1, страницы 89–102.
- [7] А. Е. Миронов, Т. Е. Панов, Пересечения квадрик, момент-угол-многообразия и гамильтоново-минимальные лагранжевы вложения, Функц. анализ и его прил. (2013), 47, выпуск 1, стр.47; arXiv:1103.4970.
- [8] А. Е. Миронов, Т. Е. Панов, Гамильтоново-минимальные лагранжевы подмно-гообразия в торических многообразиях, Успехи математических наук 68 (2013), выпуск 2.
- [9] Y.-G. Oh, Volume Minimization of Lagrangian submanifolds under Hamiltonian deformations, Math. Z. 212 (1993), no.2, 175-192.

E-mail address: artofkot@gmail.com