Toral rank conjecture for moment-angle complexes

Ustinovsky Yury

Abstract

In this paper we introduce an operation on the set of simplicial complexes, which we shall call "doubling operation". We show that the moment-angle complex \mathcal{Z}_K is the real moment-angle complex $\mathbb{R}Z_{L(K)}$ for simplicial complex $L(K)$ obtained from K by applying "doubling operation". As an application of this operation we prove the toral rank conjecture for \mathcal{Z}_K by estimating the lower bound of the cohomology rank (with rational coefficients) of the real moment-angle complexes $\mathbb{R}Z_K$. In, [4] the "doubling operation" for the polytopes was defined and the same result was proved for the class of the moment-angle manifolds, so this article can be considered as the extension of the previous one.

1 Doubling operations

Here we give the definition of the "doubling operation" and discuss its main properties.

Definition 1.1. Let K be an arbitrary simplicial complex on the vertex set $[m]$ = $\{v_1, \ldots, v_m\}$. The *double* of K is the simplicial complex $L(K)$ on the vertex set $[2m] =$ $\{v_1, v'_1, \ldots, v_m, v'_m\}$ determined by the following condition: $\omega \subset [2m]$ is the minimal (by inclusion) missing simplex of $L(K)$ iff ω is of the form $\{v_{i_1}, v'_{i_1}, \ldots, v_{i_k}, v'_{i_k}\}\,$, where $\{v_{i_1}, \ldots, v_{i_k}\}\$ is a missing simplex of K.

If $K = \partial P^*$ is a boundary of the dual of the simple polytope P, then $L(K)$ coincides with $L(P)^*$, see the definition 1 in [4].

Examples.

- If $K = \Delta^m$ is the $(m-1)$ -dimensional simplex, then $L(K) = \Delta^{2m}$.
- If $K = \partial \Delta^m$ is the boundary of the $(m-1)$ -dimensional simplex, then $L(K) = \partial \Delta^{2m}$.

It is easy to see that "doubling operation" respects join of the simplicial complexes i.e. $L(K_1 * K_2) = L(K_1) * L(K_2).$

Given a simplicial complex K we denote by mdim K the minimal dimension of the maximal by inclusion simplices. Thus, for any K mdim $K \leq \dim K$, and K is pure iff mdim $K = \dim K$.

The following lemma is the direct corollary from the definitions.

Lemma 1.2. Let K be a simplicial complex on $[m]$, then $dim L(K) = m + dim K$ and mdim $L(K) = m + \text{mdim } K$.

2 K-powers

Definition 2.1. Let (X, A) be a pair of CW — complexes. For a subset $\omega \subset [m]$ we define

$$
(X, A)^{\omega} := \{ (x_1, \dots, x_m) \in X^m | x_i \in A \text{ for } i \notin \omega \}.
$$

Now let K be a simplicial complex on $[m]$. The K-power of the pair (X, A) is

$$
(X, A)^K := \bigcup_{\omega \in K} (X, A)^{\omega}.
$$

In this paper we shall consider two examples of K -powers (see [1]):

- Moment-angle complexes $\mathcal{Z}_K = (D^2, S^1)^K$.
- Real moment-angle complexes $\mathbb{R} \mathcal{Z}_K = (I^1, S^0)^K$.

The next lemma explains the usefulness of the notion of "doubling operation" in the studying of the relationship between moment-angle complexes and real moment-angle complexes.

Lemma 2.2. Let (X, A) be a pair of CW — complexes and K be a simplicial complex on the vertex set [m]. Consider a pair $(Y, B) = (X \times X, (X \times A) \cup (A \times X))$. For this pair we have.

$$
(Y, B)^K = (X, A)^{L(K)}
$$
.

In particular $\mathcal{Z}_K = \mathbb{R} \mathcal{Z}_{L(K)}$.

Proof. For a point $y = (y_1, \ldots, y_m) \in Y^m$ we set

$$
\omega_Y(\mathbf{y}) = \{v_i \in [m] \mid y_i \in Y \backslash B\} \subset [m].
$$

For a point $\mathbf{x} = (x_1, x_1', \dots, x_m, x_m') \in X^{2m}$ the subset $\omega_X(\mathbf{x}) \subset [2m]$ is defined in a similar way. Let $y = (y_1, ..., y_m) = ((x_1, x_1'), ..., (x_m, x_m')) \in Y^m = X^{2m}$. It follows from the definition of the K-powers that $y \notin (Y, B)^K$ iff $\omega_Y(y) \notin K$. The latter is equivalent to the condition $\omega_X(\mathbf{x}) \notin L(K)$, where $\mathbf{x} = (x_1, x_1', \dots, x_m, x_m')$, since if $\omega_Y(\mathbf{y}) = \{v_{i_1}, \dots, v_{i_k}\}\$ then $\omega_X(\mathbf{x}) \supset \{v_{i_1}, v'_{i_1}, \dots, v_{i_k}, v'_{i_k}\}.$ Therefore

$$
\mathbf{y} \notin (Y, B)^K \Leftrightarrow \mathbf{x} \notin (X, A)^{L(K)}
$$

and the statement of the lemma is proved.

Example. Let $K = \partial \Delta^2$ be the boundary of 1-simplex. Then we get decomposition of 3-dimensional sphere:

$$
\mathcal{Z}_K = D^2 \times S^1 \cup S^1 \times D^2 = S^3.
$$

On the other hand $L(K) = \partial \Delta^4$ and $\mathbb{R} \mathcal{Z}_{L(K)} = \partial I^4 = S^3$ is the boundary of the standard 4-dimensional cube. So, in accordance with the lemma, $\mathcal{Z}_K = \mathbb{R} \mathcal{Z}_{L(K)}$.

3 Toral rank conjecture

Let X be a finite-dimensional topological space. Denote by $trk(X)$ the largest integer for which X admits an *almost free* $T^{\text{trk}(X)}$ action.

Conjecture (Halperin's toral rank conjecture, [3]).

$$
\operatorname{hrk}(X,\mathbb{Q}) := \sum \dim H^i(X,\mathbb{Q}) \geq 2^{\operatorname{trk}(X)}
$$

Moment-angle complexes provide a big class of spaces with torus action, since there is natural coordinatewise T^m action on the space \mathcal{Z}_K . In fact for some r one can choose subtorus $T^r \subset T^m$ such that the action $T^r \colon \mathcal{Z}_K$ is almost free. Our aim is to estimate the maximal rank of such subtorus and the lower bound of $hrk(\mathcal{Z}_K, \mathbb{Q})$.

Lemma 3.1. Let K be $(n-1)$ -dimensional simplicial complex on the vertex set [m]. Then the rank of subtorus $T^r \subset T^m$ that acts almost freely on \mathcal{Z}_K is less or equal to $m - n$.

 \Box

Proof. For a subset $\omega \subset [m]$ we set $T^{\omega} = (T, e)^{\omega}$ (see definition of K-powers), where $e \in T$ is identity. It is easy to see that isotropy subgroups of the action T^m : \mathcal{Z}_K are of the form $T^{\omega}, \omega \in K$. Therefore $T^r \subset T^m$ acts almost freely iff the set $T^r \cap T^{\omega}$ is finite for any $\omega \in K$.

Let σ be the simplex of the dimension $(n-1)$. Since the intersection $T^r \cap T^{\sigma}$ of two subtori in T^m is finite,

$$
\operatorname{rk} T^r + \operatorname{rk} T^\sigma \leqslant \operatorname{rk} T^m,
$$

thus $r \leq m - n$.

Remark. In fact for any $(n-1)$ -dimensional complex K there is subtorus $T^r \subset T^m$ of the

 \Box

 \Box

rank $r = m - n$ that acts on \mathcal{Z}_K almost freely, [2] 7.1. Now we prove our main result about the cohomology rank of the real moment-angle complexes.

Theorem 3.2. Let K be a simplicial complex on the vertex set $[m]$ with mdim $K = n - 1$. Then

hrk $(\mathbb{R}\mathcal{Z}_K,\mathbb{Q})\geqslant 2^{m-n}.$

We first formulate one general lemma.

Lemma 3.3. Let (X, A) be a pair of CW-complexes; let $U(A)$ be a neighbourhood of A in X such that $(U(A), A) \simeq (A \times [0, 1), A \times \{0\})$. Then the cohomology rank of the space Y, obtained from the two copies of X by gluing them together along $A, Y = X_1 \bigcup_A X_2$, satisfies inequality:

$$
hrk(Y, \mathbb{Q}) \geqslant hrk(X, \mathbb{Q}).
$$

This fact is direct consequence of the Mayer Vietoris long exact sequence.

Proof of the theorem. We shall prove this fact by induction on m . The base of induction is trivial.

Assume this statement is true for the complexes with less than m vertices and K is the complex with m vertices.

The real moment-angle complex is a subspace of the m-dimensional cube $\mathbb{R}Z_K \subset$ $[-1,1]^m$. Denote by (x_1,\ldots,x_m) coordinates in $[-1,1]^m$. Assume that the vertex v_1 belong to the maximal (by inclusion) simplex of K of the dimension mdim $K = n - 1$. Consider the decomposition of $\mathbb{R}Z_K = M_+ \cup_X M_-,$ where

 $M_+ = \{ \vec{x} \in \mathbb{R} \mathcal{Z}_K \subset \mathbb{R}^m \mid x_1 \geqslant 0 \},\$

 $M_- = \{ \vec{x} \in \mathbb{R} \mathcal{Z}_K \subset \mathbb{R}^m \mid x_1 \leqslant 0 \},\$

 $X = \{ \vec{x} \in \mathbb{R} \mathcal{Z}_K \subset \mathbb{R}^m \mid x_1 = 0 \}.$

It is easy to see that the pair (M_+, X) satisfies the hypothesis of the lemma 3.3, so

$$
\operatorname{hrk}(\mathbb{R}\mathcal{Z}_K,\mathbb{Q})\geqslant\operatorname{hrk}(X,\mathbb{Q}).
$$

Now lets describe the space X more explicitly. Let k be the number of vertices in the complex lk v_1 . Then X is just the disjoint union of the 2^{m-k-1} copies of the space $\mathbb{R}Z_{\mathrm{lk }v_1}$. Moreover, since v_1 is vertex of the maximal (by inclusion) simplex of the minimal dimension n, so mdim lk $v_1 = n - 2$. Thus, by the hypothesis of induction

$$
\text{hrk}(X, \mathbb{Q}) = 2^{m-k-1} \text{hrk}(\mathbb{R} \mathcal{Z}_{\text{lk } v_1}, \mathbb{Q}) \geq 2^{m-k-1} \cdot 2^{k-(n-1)} = 2^{m-n}
$$

The step of induction is proved.

Now let's turn our attention to the moment-angle complexes. Combining the results of lemma 1.2, lemma 2.2 and theorem 3.2 we have:

$$
\mathrm{hrk}(\mathcal{Z}_K,\mathbb{Q})=\mathrm{hrk}(\mathbb{R}\mathcal{Z}_{L(K)})\geqslant 2^{2m-\mathrm{mdim}\,L(K)-1}=2^{m-\mathrm{mdim}\,K-1}\geqslant 2^{m-\mathrm{dim}\,K-1}.
$$

Thus the toral rank conjecture holds for the action of subtori of T^m on the moment-angle complexes \mathcal{Z}_K .

The cohomology ring of \mathcal{Z}_K was calculated in [1]. One of the corollaries of this computation and Hochster's theorem states (see [1], theorem 8.7):

Theorem 3.4.

$$
H^*(\mathcal{Z}_K, \mathbb{Z}) \cong \bigoplus_{\omega \subset [m], p \geq -1} \tilde{H}^p(K_{\omega}, \mathbb{Z}),
$$

where K_{ω} is the restriction of K on the subset $\omega \subset [m]$.

In view of this theorem we can reformulate our main result as follows:

$$
\dim \bigoplus_{\omega \subset [m]} \tilde{H}^*(K_{\omega}, \mathbb{Q}) \geqslant 2^{m-n},
$$

for any simplicial complex K on $[m]$ with mdim $K = n - 1$.

The author os grateful to V. M. Buchstaber and scientific adviser T. E. Panov for suggesting the problem and attention to the research.

References

- [1] V. M. Buchstaber, T. E. Panov. Torus actions and their applications in topology and combinatorics, volume 24 of University Lecture Series. Amer. Math. Soc., Providence, RI, 2002.
- [2] M.W. Davis and T. Januszkewich. Convex polytopes, coxter orbifolds and torus actions. Duke Math. J. 62(2):417–451, 1991.
- [3] S. Halperin. Rational homotopy and torus actions. Aspects of Topology, London Math. Soc. Lecture Notes, volume 93: 293–306, 1985.
- [4] Y. Ustinovsky. Doubling operation for polytopes and torus actions. UMN, 2009, V.64, Issue 5(389).