Московский Государственный Университет имени М. В. Ломоносова

Механико-математический факультет

Кафедра высшей геометрии и топологии

Курсовая работа

Когомологии колец граней симплициальных комплексов

Журавлева Елизавета 303 группа

Введение

В этой курсовой работе описаны некоторые свойства Тог-модулей кольца граней симплициального комплекса: теорема Хохстера, связывающая эти Тог-модули с приведёнными симплициальными гомологиями полных подкомплексов исходного симплициального комплекса, и мультипликативная структура, возникающая в связи с этим.

1 Основные определения и конструкции

Будем обозначать символом ${\bf k}$ основное кольцо, которое всегда будет кольцом ${\mathbb Z}$ целых чисел или полем.

Рассматривая полиномиальную алгебру $\mathbf{k}[v_1,\ldots,v_m]$ и внешнюю алгебру $\Lambda[u_1,\ldots,u_m]$, будем считать, что эти алгебры стандартно градуированы: $\deg v_i=2, \deg u_i=-1,$ т. е. $\mathbf{k}[v_1,\ldots,v_m]=\bigoplus_{i\geqslant 0}\mathbf{k}^{2i}[v_1,\ldots,v_m]$ и $\Lambda[u_1,\ldots,u_m]=0$

 $\bigoplus_{i\geqslant 0}\Lambda^i[u_1,\dots,u_m]$, где $\Lambda^i[u_1,\dots,u_m]$ - мономы длины $i,\,{f k}^{2i}[v_1,\dots,v_m]$ - мно-

гочлены обычной степени i (в обоих случаях нулевая компонента - кольцо \mathbf{k}). Заметим, что при этой градуировке обычная коммутативнеость алгебры многочленов совпадает с градуированной коммутативностью.

Обозначим множество $\{1,\ldots,m\}$ через [m], а алгебры $\mathbf{k}[v_1,\ldots,v_m]$ и $\Lambda[u_1,\ldots,u_m]$ через $\mathbf{k}[m]$ и $\Lambda[m]$ соответственно.

Для подмножества $I = \{i_1, \dots, i_k\} \subset [m]$ обозначим через v_I свободный от квадратов моном $v_{i_1} \dots v_{i_k}$ в $\mathbf{k}[m]$. Аналогично в алгебре $\Lambda[m]$ символ u_I будет обозначать внешний моном $u_{i_1} \dots u_{i_k}$ (для $i_1 < \dots < i_k$).

Определение. Кольцом граней (или кольцом Стенли-Райснера) симплициального комплекса $\mathcal K$ на множестве [m] называется градуированное факторкольцо

$$\mathbf{k}[\mathcal{K}] = \mathbf{k}[v_1, \dots, v_m]/\mathcal{I}_{\mathcal{K}},$$

где $\mathcal{I}_{\mathcal{K}} = (v_I : I \notin \mathcal{K})$ - идеал, порождённый мономами v_I , для которых I не является симплексом комплекса \mathcal{K} . Этот идеал также называется **идеалом Стенли-Райснера** симплициального комплекса \mathcal{K} . Градуировка на $\mathbf{k}[\mathcal{K}]$ индуцируется из градуировки на $\mathbf{k}[m]$, так как идеал $\mathcal{I}_{\mathcal{K}}$ порождён однородными элементами.

На $\mathbf{k}[\mathcal{K}]$ можно естественным образом ввести структуру $\mathbf{k}[m]$ -модуля: умножение на элементы $\mathbf{k}[m]$ определяется как сквозное отображение

$$\mathbf{k}[m] \times \mathbf{k}[\mathcal{K}] \ \xrightarrow{\ \ \pi \times \mathrm{id} \ \ } \ \mathbf{k}[\mathcal{K}] \times \mathbf{k}[\mathcal{K}] \ \xrightarrow{\ \ \mu \ \ } \ \mathbf{k}[\mathcal{K}],$$

где π - естественная проекция $\mathbf{k}[m]$ на $\mathbf{k}[\mathcal{K}]$, а μ - умножение в кольце $\mathbf{k}[\mathcal{K}]$. Аналогично определим структуру $\mathbf{k}[m]$ -модуля на \mathbf{k} , введя умножение на многочлены как композицию

$$\mathbf{k}[m] \times \mathbf{k} \xrightarrow{\varepsilon \times \mathrm{id}} \mathbf{k} \times \mathbf{k} \xrightarrow{\mu} \mathbf{k},$$

где ε переводит многочлен в его свободный член, а μ - умножение в ${\bf k}$.

Напомним, что модуль P называется проективным, если для любых модулей M и N, эпиморфизма $M \xrightarrow{f} N \longrightarrow 0$ и гомоморфизма $P \xrightarrow{g} N$ существует гомоморфизм $P \xrightarrow{h} M$, замыкающий коммутативную диаграмму

$$M \xrightarrow{f} N \xrightarrow{g} 0$$

Например, свободные модули заведомо проективны.

Точная последовательность модулей

$$\cdots \xrightarrow{d} R^{-i} \xrightarrow{d} \cdots \xrightarrow{d} R^{-1} \xrightarrow{d} R^{0} \longrightarrow M \longrightarrow 0,$$

в которой все модули R^{-i} - проективные (соответственно, свободные) называется проективной (соответственно, свободной) резольвентой для модуля M.

Мы будем рассматривать в основном градуированные $\mathbf{k}[m]$ -модули и их резольвенты. В этом случае естественно требовать, чтобы R^{-i} также были градуированными $\mathbf{k}[m]$ -модулями.

Кроме того, напомним, что если даны два градуированных модуля A и B и два отображения градуированных модулей $f\colon A\to A$ и $g\colon B\to B$ степеней k и l соответственно (т. е. $f(A^i)\subset A^{i+k},\ g(B^i)\subset B^{i+l}$), то отображение $f\otimes g\colon A\otimes B\to A\otimes B$ на элементе $a\otimes b\in A^p\otimes B^q$ определяется как

$$(f \otimes g)(a \otimes b) = (-1)^{lp} f(a) \otimes g(b)$$

Конструкция: **Резольвента Кошуля**. Построим свободную резольвенту для $\mathbf{k}[m]$ -модуля \mathbf{k} . Рассмотрим тензорное произведение $E=E_m=\Lambda[m]\otimes_{\mathbf{k}}\mathbf{k}[m]$. Положив

bideg
$$(u_i \otimes 1) = (-1, 2)$$
, bideg $(1 \otimes v_i) = (0, 2)$,
 $du_i = v_i, dv_i = 0$

мы превратим E в биградуированную дифференциальную алгебру. При этом имеем: $E^{-i,2j} = \left\langle a \otimes b \mid a \in \Lambda^i[u_1,\dots,u_m], b \in \mathbf{k}^{2(j-i)}[v_1,\dots,v_m] \right\rangle_{\mathbf{k}}, E^{-i} = \bigoplus_{i} E^{-i,2j} = \Lambda^i[u_1,\dots,u_m] \otimes_{\mathbf{k}} \mathbf{k}[m]$ и $d \colon E^{-i,2j} \to E^{-i+1,2j}$.

Добавляя вышеопределённое отображение взятия свободного члена $\varepsilon \colon \mathbf{k}[m] \to \mathbf{k}$ мы получаем коцепной комплекс $\mathbf{k}[m]$ -модулей:

$$0 \longrightarrow \Lambda^{m}[m] \otimes_{\mathbf{k}} \mathbf{k}[m] \xrightarrow{d} \Lambda^{m-1-1}[m] \otimes_{\mathbf{k}} \mathbf{k}[m] \xrightarrow{d} \cdots$$
$$\cdots \xrightarrow{d} \Lambda^{1}[m] \otimes_{\mathbf{k}} \mathbf{k}[m] \xrightarrow{d} \mathbf{k}[m] \xrightarrow{\varepsilon} \mathbf{k} \longrightarrow 0$$

Так как все $\Lambda^i[m] \otimes_{\mathbf{k}} \mathbf{k}[m]$ являются свободными $\mathbf{k}[m]$ -модулями, то чтобы убедиться, что построенная последовательность является свободной резольвентой для \mathbf{k} , осталось доказать её точность. Легко видеть, что это равносильно тому, что коцепной комплекс (E,d)

$$0 \longrightarrow \Lambda^m[m] \otimes_{\mathbf{k}} \mathbf{k}[m] \stackrel{d}{\longrightarrow} \cdots \stackrel{d}{\longrightarrow} \Lambda^1[m] \otimes_{\mathbf{k}} \mathbf{k}[m] \stackrel{d}{\longrightarrow} \mathbf{k}[m] \longrightarrow 0$$

точен во всех членах, кроме последнего, а нулевые его когомологии изоморфны ${\bf k}.$

Для доказательства этого последнего утверждения мы докажем, что (E,d) коцепно гомотопен комплексу $(\mathbf{k},0)$

$$0 \longrightarrow \cdots \longrightarrow 0 \longrightarrow \mathbf{k} \longrightarrow 0$$

Рассмотрим следующие отображения из одного комплекса в другой ε : $(E,d) \to (\mathbf{k},0)$ и η : $(\mathbf{k},0) \to (E,d)$:

$$\cdots \xrightarrow{d} \Lambda^{1}[m] \otimes_{\mathbf{k}} \mathbf{k}[m] \xrightarrow{d} \mathbf{k}[m] \longrightarrow 0$$

$$\uparrow \downarrow \qquad \qquad \qquad \uparrow \downarrow \varepsilon$$

$$\cdots \longrightarrow 0 \longrightarrow \mathbf{k} \longrightarrow 0$$

где $\eta \colon \mathbf{k} \to \mathbf{k}[m]$ - естественное вложение.

Ясно, что $\varepsilon \eta = \mathrm{id}$.

Осталось построить коцепную гомотопию s между $\eta \varepsilon$ и id

$$\cdots \xrightarrow{d} \Lambda^{1}[m] \otimes_{\mathbf{k}} \mathbf{k}[m] \xrightarrow{d} \mathbf{k}[m] \xrightarrow{\varepsilon} 0$$

$$\downarrow s^{1} \qquad \downarrow d \qquad \downarrow \eta \varepsilon \qquad \downarrow d \qquad \downarrow \eta \varepsilon$$

$$\cdots \xrightarrow{d} \Lambda^{1}[m] \otimes_{\mathbf{k}} \mathbf{k}[m] \xrightarrow{d} \mathbf{k}[m] \xrightarrow{\varepsilon} 0$$

т. е. семейство $s=\{s^i\colon E^{-i}\to E^{-i-1}\}=\{s^{i,2j}\colon E^{-i,2j}\to E^{-i-1,2j}\}$, такое что $sd+ds=\mathrm{id}-\eta\varepsilon$. Иными словами, речь идёт об отображении s_m дифференциальной биградуированной алгебры E_m в себя бистепени (-1,0), удовлетворяющее тождеству $sd+ds=\mathrm{id}-\eta\varepsilon$ в E_m .

Будем определять s_m по индукции, начиная с m=1: определим $s_1\colon \mathbf{k}[v]\to \Lambda[u]\otimes_{\mathbf{k}}\mathbf{k}[v]$ по формуле $s_1(a_0+a_1v+\ldots+a_jv^j)=u(a_1+a_2v+\ldots+a_jv^{j-1}).$

Проверим, что это отображение коцепной гомотопии. Пусть $x=a_0+a_1v+\ldots+a_jv^j$, тогда $ds_1(x)=x-a_0=x-\eta\varepsilon(x), s_1d(x)=s_1(0)=0$. Для ux имеем: $ds_1(ux)=d(0)=0,\ s_1d(ux)=s_1(vx)=ux,\ \eta\varepsilon(ux)=0$. Таким образом, s_1 - коцепная гомотопия.

Пусть мы уже построили уже отображения s_k при k < m. Заметим, что $E_m = E_{m-1} \otimes_{\mathbf{k}} E_1$, $\varepsilon_m = \varepsilon_{m-1} \otimes \varepsilon_1$, $\eta_m = \eta_{m-1} \otimes \eta_1$ (так как отображения ε_i и η_i имеют степень 0). Определим $s_m = s_{m-1} \otimes \operatorname{id} + \eta_{m-1} \varepsilon_{m-1} \otimes s_1$.

Проверим, что эта формула задаёт требуемую коцепную гомотопию. Пусть $e_{m-1} \in E_{m-1}$ имеет степень $p, e_1 \in E_1$ имеет степень q. Тогда

$$s_m(e_{m-1} \otimes e_1) = s_{m-1}(e_{m-1}) \otimes e_1 + (-1)^p \eta_{m-1} \varepsilon_{m-1}(e_{m-1}) \otimes s_1(e_1),$$

$$ds_m(e_{m-1} \otimes e_1) = ds_{m-1}(e_{m-1}) \otimes e_1 + (-1)^{p+1} s_{m-1}(e_{m-1}) \otimes d(e_1) + (-1)^p d\eta_{m-1} \varepsilon_{m-1}(e_{m-1}) \otimes s_1(e_1) + \eta_{m-1} \varepsilon_{m-1}(e_{m-1}) \otimes ds_1(e_1),$$

$$s_{m}d(e_{m-1} \otimes e_{1}) = (s_{m-1} \otimes \operatorname{id})(d(e_{m-1}) \otimes e_{1} + (-1)^{p}e_{m-1} \otimes d(e_{1})) + (\eta_{m-1}\varepsilon_{m-1} \otimes s_{1})(d(e_{m-1}) \otimes e_{1} + (-1)^{p}e_{m-1} \otimes d(e_{1})) = s_{m-1}d(e_{m-1}) \otimes e_{1} + (-1)^{p}s_{m-1}(e_{m-1}) \otimes d(e_{1}) + (-1)^{p+1}\eta_{m-1}\varepsilon_{m-1}d(e_{m-1}) \otimes s_{1}(e_{1}) + \eta_{m-1}\varepsilon_{m-1}(e_{m-1}) \otimes s_{1}d(e_{1}),$$

$$(ds_{m} + s_{m}d)(e_{m-1} \otimes e_{1}) = (ds_{m-1} + s_{m-1}d)(e_{m-1}) \otimes e_{1} + \eta_{m-1}\varepsilon_{m-1}(e_{m-1}) \otimes (ds_{1} + s_{1}d)(e_{1}) = (id - \eta_{m-1}\varepsilon_{m-1})(e_{m-1}) \otimes e_{1} + \eta_{m-1}\varepsilon_{m-1}(e_{m-1}) \otimes (id - \eta_{1}\varepsilon_{1})(e_{1}) = (id - \eta_{m}\varepsilon_{m})(e_{m-1} \otimes e_{1}).$$

Таким образом, s_m - коцепная гомотопия.

Полученная свободная резольвента для ${\bf k}$ и называется резольвентой Кошуля.

2 Тог-модули и теорема Хохстера

Так как все $\Lambda^i[m] \otimes_{\mathbf{k}} \mathbf{k}[m]$ являются $\mathbf{k}[m]$ -модулями, тензорно умножим резольвенту Кошуля на $\mathbf{k}[\mathcal{K}]$ и воспользуемся изоморфизмом $\mathbf{k}[m]$ - модулей:

$$\Lambda^{i}[m] \otimes_{\mathbf{k}} \mathbf{k}[m] \otimes_{\mathbf{k}[m]} \mathbf{k}[\mathcal{K}] \simeq \Lambda^{i}[m] \otimes_{\mathbf{k}} \mathbf{k}[\mathcal{K}]$$

Получаем коцепной комплекс:

$$0 \longrightarrow \Lambda^m[m] \otimes_{\mathbf{k}} \mathbf{k}[\mathcal{K}] \xrightarrow{d} \cdots \xrightarrow{d} \Lambda^1[m] \otimes_{\mathbf{k}} \mathbf{k}[\mathcal{K}] \xrightarrow{d} \mathbf{k}[\mathcal{K}] \longrightarrow 0,$$

где оператор d определяется как $d(a\otimes b)=d(a)\otimes b$ (т.е. $d\otimes \mathrm{id}$).

Тогда его (-i)-ый градуированный модуль когомологий - это $\mathrm{Tor}_{\mathbf{k}[m]}^{-i}(\mathbf{k},\mathbf{k}[\mathcal{K}]).$

Так как оператор d $\mathbf{k}[m]$ -линеен, повышает внешнюю градуировку на 1 и сохраняет внутреннюю, то $\mathrm{Tor}_{\mathbf{k}[m]}^{-i}(\mathbf{k},\mathbf{k}[\mathcal{K}])$ раскладывается в прямую сумму \mathbf{k} -модулей:

$$\operatorname{Tor}_{\mathbf{k}[m]}^{-i}(\mathbf{k},\mathbf{k}[\mathcal{K}]) = \bigoplus_{j \geqslant 0} \operatorname{Tor}_{\mathbf{k}[m]}^{-i,2j}(\mathbf{k},\mathbf{k}[\mathcal{K}]).$$

Как известно, $\mathrm{Tor}_A^{-i}(M,N)$ не зависит (с точностью до изоморфизма) от резольвенты для M и модули M и N можно менять местами, т.е. $\mathrm{Tor}_A^{-i}(M,N)\simeq \mathrm{Tor}_A^{-i}(N,M)$.

Таким образом, из вышесказанного следует, что $\mathrm{Tor}_{\mathbf{k}[m]}(\mathbf{k}[\mathcal{K}],\mathbf{k})$ - биградуированный $\mathbf{k}[m]$ -модуль:

$$\operatorname{Tor}_{\mathbf{k}[m]}(\mathbf{k}[\mathcal{K}], \mathbf{k}) = \bigoplus_{i,j} \operatorname{Tor}_{\mathbf{k}[m]}^{-i,2j}(\mathbf{k}[\mathcal{K}], \mathbf{k}),$$

и мы имеем изоморфизм биградуированных $\mathbf{k}[m]$ -модулей:

$$\operatorname{Tor}_{\mathbf{k}[m]}(\mathbf{k}[\mathcal{K}], \mathbf{k}) \simeq H(\Lambda[u_1, \dots, u_m] \otimes_{\mathbf{k}} \mathbf{k}[\mathcal{K}], d)$$

ТЕОРЕМА(Хохстер). Имеет место равенство (изоморфизм к-модулей):

$$\operatorname{Tor}_{\mathbf{k}[m]}^{-i,2j}(\mathbf{k}[\mathcal{K}],\mathbf{k}) = \bigoplus_{J \subset [m]:|J|=j} \widetilde{H}^{j-i-1}(\mathcal{K}_J;\mathbf{k}),$$

где \mathcal{K}_J - полный подкомплекс в \mathcal{K} , натянутый на J. Здесь полагаем, что $H^{-1}(\mathcal{K}_\varnothing;\mathbf{k})=\mathbf{k}.$

Введем фактор-алгебру $R^*(\mathcal{K}) = \Lambda[u_1,\ldots,u_m] \otimes_{\mathbf{k}} \mathbf{k}[\mathcal{K}]/(v_i^2 = u_i v_i = 0, 1 \le i \le m)$. Идеал $I = (v_i^2, u_i v_i, 1 \le i \le m)$ является однородным и инвариантным относительно действия дифференциала, так как порождающие элементы идеала являются однородными элементами относительно биградуировки, и $d(v_i^2) = 0, d(u_i v_i) = 0$. Из этих двух свойств следует, что факторалгебра $R^*(\mathcal{K})$ наследует действие дифференциала (d(a+I) := d(a)+I) и биградуировку.

Рассмотрим отображение проекции $\varrho\colon \Lambda[u_1,\ldots,u_m]\otimes_{\mathbf{k}}\mathbf{k}[\mathcal{K}]\to R^*(\mathcal{K}).$ Заметим, что $\mathbf{k}[\mathcal{K}]$ как векторное пространство над \mathbf{k} имеет базис, состоящий из мономов $v_I,I\in\mathbf{k}[\mathcal{K}]$. Тогда $\Lambda^i[m]\otimes_{\mathbf{k}}\mathbf{k}[\mathcal{K}]$ имеет в качестве базиса над \mathbf{k} элементы вида $u_Jv_I,I\in\mathcal{K},J\subset[m],|J|=i$. Таким образом, алгебра $R^*(\mathcal{K})$ - это \mathbf{k} -модуль с базисом $u_Jv_I,I\in\mathcal{K},J\subset[m],I\cap J=\varnothing$. Заметим, что эта алгебра конечномерна.

Определим к-линейное отображение

$$i: R^*(\mathcal{K}) \to \Lambda[u_1, \dots, u_m] \otimes_{\mathbf{k}} \mathbf{k}[\mathcal{K}], \quad i: u_J v_I \mapsto u_J v_I$$

(каждый класс в $R^*(\mathcal{K})$ представлен элементом вида $\sum_i k_i u_J v_I$). Отображение i коммутирует с дифференциалом и сохраняет градуировку, следовательно i индуцирует гомоморфизм биградуированных \mathbf{k} -векторных пространств, причем $\varrho i=\mathrm{id}$.

Утверждение. Отображение проекции $\varrho: \Lambda[u_1, \dots, u_m] \otimes_{\mathbf{k}} \mathbf{k}[\mathcal{K}] \to R^*(\mathcal{K})$ индуцирует изоморфизм в когомологиях.

Для доказательства утверждения построим коцепную гомотопию между отображениями id и $i\varrho \colon \Lambda[m] \otimes_{\mathbf{k}} \mathbf{k}[\mathcal{K}] \to \Lambda[m] \otimes_{\mathbf{k}} \mathbf{k}[\mathcal{K}]$. Рассмотрим первый случай: $\mathcal{K} = \Delta^{m-1}$. Тогда

$$\Lambda[u_1, \dots, u_m] \otimes_{\mathbf{k}} \mathbf{k}[\mathcal{K}] \simeq \Lambda[u_1, \dots, u_m] \otimes_{\mathbf{k}} \mathbf{k}[v_1, \dots, v_m]$$
$$R^*(\mathcal{K}) \simeq \left(\Lambda[u] \otimes_{\mathbf{k}} \mathbf{k}[v]/(v^2, uv)\right)^{\otimes m}$$

Докажем для m=1.

$$0 \longrightarrow \Lambda^{1}[u] \otimes_{\mathbf{k}} \mathbf{k}[v] \xrightarrow{d} \mathbf{k}[v] \longrightarrow 0$$

$$\downarrow id \downarrow \downarrow i\varrho \downarrow id \downarrow \downarrow i\varrho i\varrho \downarrow i\varrho \varrho \downarrow i\varrho \downarrow i\varrho \downarrow i\varrho$$

Напомним, что $E_m = \Lambda[m] \otimes_{\mathbf{k}} \mathbf{k}[m]$. Определим $s_1 \colon E_1^{0,*} = \mathbf{k}[v] \to \Lambda^1[u] \otimes_{\mathbf{k}} \mathbf{k}[v]$:

$$s_1(a_0 + a_1v + \dots + a_jv^j) = u(a_2v + a_3v^2 + \dots + a_jv^{j-1}).$$

Нужно проверить что это, действительно, оператор коцепной гомотопии, то есть выполнено тождество: $ds+sd=\operatorname{id}-i\varrho$ (s_1 - обозначение для s в случае m=1). Достаточно проверить для элементов вида x и ux, где $x=a_0+a_1v+a_2v^2+\cdots+a_jv^j$, так как остальные элементы $\mathbf{k}[m]$ -модуля E_1 являются суммой элементов этих двух типов с коэффициентами из \mathbf{k} .

Проверим тождество для x: $ds_1(x) = d(u(a_2v + \dots + a_jv^{j-1})) = (a_2v + \dots + a_jv^{j-1})d(u) = a_2v^2 + \dots + a_jv^j = x - a_0 - a_1v$, $s_1d(x) = s_1(0) = 0$, $i\varrho(x) = i\varrho(a_0 + a_1v + \dots + a_jv^j) = a_0 + a_1v$. Таким образом, тождество выполнено для x.

Проверим тождество для ux: $ds_1(ux) = d(0) = 0$, $s_1d(ux) = s_1(d(u(a_0 + a_1v + \dots + a_jv^j))) = s_1(a_0v + a_1v^2 + \dots + a_jv^{j+1}) = u(a_1v + \dots + a_jv^j) = ux - a_0u$. Таким образом, тождество для элемента ux верно и s_1 - оператор коцепной гомотопии.

Теперь постороим по индукции $s_m\colon E_m\to E_m$. Предположим, что для m=k-1 коцепная гомотопия уже постоена. Аналогично рассуждениям в построении резольвенты Кошуля, $E_k=E_{k-1}\otimes E_1, \varrho_k=\varrho_{k-1}\otimes \varrho_1, i_k=i_{k-1}\otimes i_1, \, s_k=s_{k-1}\otimes \operatorname{id}+i_{k-1}\varrho_{k-1}\otimes s_1$ - оператор коцепной гомотопии.

Пусть теперь $\mathcal K$ - произвольный комплекс на вершинах [m]. Заметим, что

$$\Lambda[u_1,\ldots,u_m] \otimes_{\mathbf{k}} \mathbf{k}[v_1,\ldots,v_m]/\mathcal{I}_{\mathcal{K}} \simeq \Lambda[u_1,\ldots,u_m] \otimes_{\mathbf{k}} \mathbf{k}[\mathcal{K}],$$

$$R^*(\Delta^{m-1})/\mathcal{I}_{\mathcal{K}} \simeq R^*(\mathcal{K}),$$

где $\mathcal{I}_{\mathcal{K}}$ - идеал Стенли-Райснера, $\mathcal{I}_{\mathcal{K}} = (v_I, I \notin \mathcal{K})$. Пусть $M = \{v_I, I \notin \mathcal{K}\}$ - множество порождающих данного идеала, тогда идеал имеет вид:

$$\mathcal{I}_{\mathcal{K}} = \langle a_1 m_1 + \dots + a_s m_s \mid a_i \in \Lambda[m] \otimes_{\mathbf{k}} \mathbf{k}[m], m_i \in M \rangle.$$

Заметим, что $\mathcal{I}_{\mathcal{K}}$ - \mathbf{k} -модуль с базисом, состоящим из элементов вида

 $u_J v_{i_1}^{\alpha_1} \cdots v_{i_k}^{\alpha_k}, \ I = \{i_1, \cdots i_k\} \notin \mathcal{K}, \ \alpha_j > 0.$ Нужно проверить: $d(\mathcal{I}_{\mathcal{K}}) \subset \mathcal{I}_{\mathcal{K}}, i\varrho(\mathcal{I}_{\mathcal{K}}) \subset \mathcal{I}_{\mathcal{K}}, s(\mathcal{I}_{\mathcal{K}}) \subset \mathcal{I}_{\mathcal{K}}.$ Для того, чтобы $d(\mathcal{I}_{\mathcal{K}})\subset\mathcal{I}_{\mathcal{K}}$ достаточно выполнения $d(v_I)\subset\mathcal{I}_{\mathcal{K}}$ в силу разложения произвольного элемента $x \in \mathcal{I}_{\mathcal{K}}$ $(x = a_1 m_1 + \dots + a_s m_s)$. Но $d(v_I) = 0$, следовательно первое включение выполнено. Проверим второе включение. Так как ρ - отображение проекции, то

$$i \varrho(u_J v_{i_1}^{\alpha_1} \cdots v_{i_k}^{\alpha_k}) = egin{cases} u_J v_{i_1} \cdots v_{i_k}, & \text{если } \alpha_i = 1, J \cap \{i_1, \cdots, i_k\} = \varnothing \\ 0, & \text{иначе} \end{cases}$$

тогда $i\varrho(\mathcal{I}_{\mathcal{K}})\subset\mathcal{I}_{\mathcal{K}}$. Остается проверить третье включение. Рассмотрим индуктивную формулу для s_m :

$$s_m = s_1 \otimes \underbrace{\operatorname{id} \otimes \cdots \otimes \operatorname{id}}_{m-1} + i_1 \varrho_1 \otimes s_1 \otimes \underbrace{\operatorname{id} \otimes \cdots \otimes \operatorname{id}}_{m-2} + \cdots + \underbrace{i_1 \varrho_1 \otimes \cdots \otimes i_1 \varrho_1}_{m-1} \otimes s_1.$$

Проверим, что эта формула верна для произвольного m. Она верна для m=1, так как преобретает вид $s_1=s_1$, для m=2 она верна по определению s_2 . Предположим, что формула верна для m=k-1. Тогда для m=kимеем:

$$s_{k} = s_{k-1} \otimes \operatorname{id} + i_{k-1} \varrho_{k-1} \otimes s_{1} = \left(\sum_{j=0}^{k-2} \underbrace{i_{1}\varrho_{1} \otimes \cdots \otimes i_{1}\varrho_{1}}_{j} \otimes s_{1} \otimes \underbrace{\operatorname{id} \otimes \cdots \otimes \operatorname{id}}_{k-j-2} \right) \otimes \operatorname{id} + \underbrace{i_{1}\varrho_{1} \otimes \cdots \otimes i_{1}\varrho_{1}}_{k-1} \otimes s_{1} = \sum_{j=0}^{k-1} \underbrace{i_{1}\varrho_{1} \otimes \cdots \otimes i_{1}\varrho_{1}}_{j} \otimes s_{1} \otimes \underbrace{\operatorname{id} \otimes \cdots \otimes \operatorname{id}}_{k-j-1},$$

Справедливость индуктивной формулы доказана. Воспользуемся этим для доказательства третьего включения.

$$s_m(u_J v_{i_1}^{\alpha_1} \cdots v_{i_k}^{\alpha_k}) = \sum_{p: \alpha_p > 1} \pm u_J u_{i_p} v_{i_1}^{\alpha_1} \cdots v_{i_p}^{\alpha_p - 1} \cdots v_{i_k}^{\alpha_k}.$$

Таким образом, $s(\mathcal{I}_{\mathcal{K}}) \subset \mathcal{I}_{\mathcal{K}}$.

Так как отображения $d, i\varrho, s$ переводят идеал в себя, они индуцируют отображения на фактор-пространствах $\Lambda[u_1,\ldots,u_m]\otimes_{\mathbf{k}}\mathbf{k}[\mathcal{K}], R^*(\mathcal{K})$, причем остается верным тождество $ds + sd = id - i\varrho$.

Утверждение доказано.

Введем мультиградуировку на $\mathbf{k}[v_1,\ldots,v_m]$: mdeg $v_1^{i_1}\cdots v_m^{i_m}=(2i_1,\ldots,2i_m)$. Кольцо $\mathbf{k}[\mathcal{K}]$ - это кольцо $\mathbf{k}[v_1,\ldots,v_m]$, профакторизованное по идеалу $\mathcal{I}_{\mathcal{K}}$, однородному относительно мультиградуировки, поэтому $\mathbf{k}[\mathcal{K}]$ тоже наследует мультиградуировку.

Введем мультиградуировку на $\Lambda[u_1,\ldots,u_m]\otimes_{\mathbf{k}}\mathbf{k}[v_1,\ldots,v_m]$:

$$mdeg \ u_i = (-1; 0, \dots, 0, 2, 0, \dots, 0), \ mdeg \ v_i = (0; 0, \dots, 0, 2, 0, \dots, 0),$$

mdeg
$$u_i \otimes v_i = (-1; 0, \dots, 0, 4, 0, \dots, 0),$$

mdeg $u_i \otimes v_i = (-1; 0, \dots, 0, 2, 0, \dots, 0, 2, 0, \dots, 0).$

Тогда в резольвенте Кошуля можно считать, что введена мультиградуировка, дифференциал повышает внешнюю компоненту на 1, оставляет на месте m внутренних. Также можно считать, чтто фактор-алгебра $R^*(\mathcal{K})$ мультиградуированна, так как идеал, по которому ведется факторизация, является однородным относительно мультиградуировки. Тогда

$$\operatorname{Tor}_{\mathbf{k}[m]}^{-i,2a}(\mathbf{k}[\mathcal{K}],\mathbf{k}) \simeq H^{-i,2a}(\Lambda[u_1,\ldots,u_m] \otimes_{\mathbf{k}} \mathbf{k}[\mathcal{K}],d) \simeq H^{-i,2a}(R^*(\mathcal{K}),d),$$

где
$$a = (a_1, \ldots, a_m) \in (\mathbb{Z}_{\geqslant 0})^m$$
.

Представим подмножество $J \subset [m]$ в виде вектора, j-я координата которого равна 1, если $j \in J$, и 0 иначе. Тогда получаем следующую формулировку теоремы Хохстера:

Теорема. Для любого подмножества $J \subset [m]$ имеем

$$\operatorname{Tor}_{\mathbf{k}[v_1,\ldots,v_m]}^{-i,2J}(\mathbf{k}[\mathcal{K}],\mathbf{k}) \simeq \widetilde{H}^{|J|-i-1}(\mathcal{K}_J;\mathbf{k}),$$

и $\mathrm{Tor}_{\mathbf{k}[v_1,...,v_m]}^{-i,2a}(\mathbf{k}[\mathcal{K}],\mathbf{k})=0,$ если a - вектор, состоящий не только из 0 и 1.

Доказательство.

Пусть $C^p(\mathcal{K}_J)$ -p-я группа симплициальных коцепей с коэффициентами из \mathbf{k} . Обозначим за $\alpha_L \in C^{p-1}(\mathcal{K}_J)$ базисную функцию, равную 1 на $L=(l_1,\ldots,l_p)\in\mathcal{K}_J$ и 0 на остальных симплексах комплекса \mathcal{K}_J размерности p-1. Определим семейство \mathbf{k} -линейных отображений $\{f_p,p=0,1,\ldots\}$, задав их на базисных элементах и продолжив по линейности:

$$f_p \colon C^{p-1}(\mathcal{K}_J) \to R^{p-|J|,2J}(\mathcal{K})$$

 $\alpha_L \mapsto \varepsilon(L,J)u_{J \setminus L}v_L,$

где $\varepsilon(L,J)$ определяется как

$$\varepsilon(L,J) = \prod_{j \in L} \varepsilon(j,J),$$

где $\varepsilon(j,J)=(-1)^{r-1}$, если j - r-й по возростанию элемент множества J. Заметим, что отображение f_p переводит базис \mathbf{k} -модуля $C^{p-1}(\mathcal{K}_J)$ в базис $R^{p-|J|,2J}(\mathcal{K})$, следовательно f_p - изоморфизм \mathbf{k} -модулей. Проверим, что f_p коммутирует с дифференциалом:

$$\begin{split} f_{p+1}(d\alpha_L) &= f_{p+1} \left(\sum_{j \in J \backslash L, j \cup L \in \mathcal{K}_J} \varepsilon(j, j \cup L) \alpha_{j \cup L} \right) = \\ &= \sum_{j \in J \backslash L, j \cup L \in \mathcal{K}_J} \varepsilon(j, j \cup L) f(\alpha_{j \cup L}) = \sum_{j \in J \backslash L, j \cup L \in \mathcal{K}_J} \varepsilon(j, j \cup L) \varepsilon(j \cup L, J) u_{J \backslash (j \cup L)} v_{j \cup L}, \end{split}$$

$$df_p(\alpha_L) = d(\varepsilon(L,J)u_{J\setminus L}v_L) = \sum_{j\in J\setminus L, j\cup L\in\mathcal{K}_J} \varepsilon(L,J)\varepsilon(j,J\setminus L)u_{J\setminus (j\cup L)v_{j\cup L}}.$$

По определению $\varepsilon(L,J)$

$$\varepsilon(j \cup L, J)\varepsilon(j, j \cup L) = \varepsilon(j, J)\varepsilon(L, J)\varepsilon(j, j \cup L).$$

Осталось проверить, что $\varepsilon(j,J)\varepsilon(j,j\cup L)=\varepsilon(j,J\setminus L)$. Перепишем требуемое равенство в виде $\varepsilon(j,J)=\varepsilon(j,j\cup L)\varepsilon(j,J\setminus L)$. Пусть $\varepsilon(j,j\cup L)=(-1)^{k-1}$, $\varepsilon(j,J\setminus L)=(-1)^{l-1}$. Введем обозначение: $L_{\leqslant}=L\cap\{1,2,\ldots,j-1\}$. Тогда $\varepsilon(j,j\cup L)=\varepsilon(j,j\cup L_{\leqslant})=(-1)^{k-1}$, $\varepsilon(j,J\setminus L)=\varepsilon(j,J\setminus L_{\leqslant})=(-1)^{l-1}$, $|L_{\leqslant}|=k-1$ (количество элементов в множестве). Тогда элемент j в множестве J будет (l+k-1)-й по возрастанию, поэтому $\varepsilon(j,J)=(-1)^{l+k}$, что и требовалось.

Таким образом, $df_p = f_{p+1}d$.

Добавим в совокупность отображений $\{f_p, p=0,1,\ldots\}$ отображение $f_{-1}\colon \mathbf{k}\to R^{-|J|,2J}, 1\mapsto u_J$. Тогда f_p определяет изоморфизм коцепных комплексов.

$$0 \longrightarrow \mathbf{k} \xrightarrow{d} C^{0}(\mathcal{K}_{J}) \xrightarrow{d} \cdots \xrightarrow{d} C^{p-1}(\mathcal{K}_{J}) \xrightarrow{d} \cdots$$

$$f_{-1} \downarrow \cong \qquad \qquad f_{p-1} \downarrow \cong \qquad \qquad f_{p-1} \downarrow \cong \qquad \qquad 0 \longrightarrow R^{-|J|,2J} \xrightarrow{d} R^{-|J|+1,2J} \xrightarrow{d} \cdots \xrightarrow{d} R^{-|J|+p,2J} \xrightarrow{d} \cdots$$

Из этого следует, что

$$\operatorname{Tor}_{\mathbf{k}[v_1,\ldots,v_m]}^{p-|J|,2J}(\mathbf{k}[\mathcal{K}],\mathbf{k}) \simeq \widetilde{H}^{p-1}(\mathcal{K}_J;\mathbf{k}).$$

Теорема Хохстера доказана.

3 Мультипликативная структура

Выше мы получили изоморфизм $\mathbf{k}[m]$ -модулей $\varphi \colon \mathrm{Tor}_{\mathbf{k}[m]}(\mathbf{k}[\mathcal{K}], \mathbf{k}) \simeq H(\Lambda[u_1, \dots, u_m] \otimes_{\mathbf{k}} \mathbf{k}[\mathcal{K}])$. Так как справа стоит \mathbf{k} -алгебра, то с помощью этого изоморфизма можно перенести умножение в $\mathrm{Tor}_{\mathbf{k}[m]}(\mathbf{k}[\mathcal{K}], \mathbf{k})$.

Ввиду того, что мы имеем также изоморфизм **k**-алгебр ϱ^* : $H(\Lambda[u_1,\ldots,u_m]\otimes_{\mathbf{k}}\mathbf{k}[\mathcal{K}])\simeq H(R^*)$, мы могли то же самое умножение получить, перенеся его из $H(R^*)$ с помощью $\varrho^*\varphi$.

Таким образом, мы ввели структуру \mathbf{k} -алгебры в $\mathrm{Tor}_{\mathbf{k}[m]}(\mathbf{k}[\mathcal{K}],\mathbf{k})$ (которой там априори не было). Полученный объект называется Тог-алгеброй симплициального комплекса \mathcal{K} .

В силу теоремы Хохстера мы имеем изоморфизм

$$\operatorname{Tor}_{\mathbf{k}[m]}(\mathbf{k}[\mathcal{K}], \mathbf{k}) \simeq \bigoplus_{J \subset [m], \ p \geqslant 0} \widetilde{H}^{p-1}(\mathcal{K}_J; \mathbf{k})$$

С помощью него мы можем перенести умножение в указанную справа прямую сумму.

Оказывается, это умножение совпадает с точностью до знака с умножением, индуцированным следующими отображениями в симплициальных коцепях:

$$\mu \colon C^{p-1}(\mathcal{K}_I) \times C^{q-1}(\mathcal{K}_J) \to C^{p+q-1}(\mathcal{K}_{I \cup J}),$$

$$(\alpha_L, \alpha_M) \mapsto \begin{cases} \alpha_{L \sqcup M}, & \text{если } I \cap J = \emptyset, \ L \sqcup M \in \mathcal{K}_{I \sqcup J} \\ 0, & \text{иначе} \end{cases}$$

(Можно проверить, что эти отображения действительно поднимаются до отображений в когомологиях $\widetilde{H}^{p-1}(\mathcal{K}_I) \times \widetilde{H}^{q-1}(\mathcal{K}_J) \to \widetilde{H}^{p+q-1}(\mathcal{K}_{I\cup J})$ и тем самым задают умножение в $\bigoplus_{J\subset [m],\; p\geqslant 0} \widetilde{H}^{p-1}(\mathcal{K}_J;\mathbf{k}).)$

Будем обозначать первое умножение через $\alpha \cdot \beta$, а второе - через $\alpha * \beta$.

В силу определения умножения в Тог-алгебре, можно считать, что первое умножение в $\bigoplus \widetilde{H}^{p-1}(\mathcal{K}_J;\mathbf{k})$ перенесено из $H(R^*)$ посредством построенных в конце доказательства теоремы Хохстера отображений $f=\{f_p\}$.

То есть, $\alpha_L \cdot \alpha_M = f^{-1}(f(\alpha_L) f(\alpha_M)) = f^{-1}(\varepsilon(L, I) u_{I \setminus L} v_L \varepsilon(M, J) u_{J \setminus M} v_M)$. Если $I \cap J \neq \emptyset$ или $L \sqcup M \not\in \mathcal{K}_{I \sqcup J}$, то $u_{I \setminus L} v_L u_{J \setminus M} v_M$ равен нулю в R^* ,

и тогда $\alpha_L \cdot \alpha_M = f^{-1}(0) = 0 = \alpha_L * \alpha_M$.

Иначе $u_{I\setminus L}v_Lu_{J\setminus M}v_M=\zeta u_{(I\cup J)\setminus (L\cup M)}v_{L\cup M}$, где $\zeta=\prod_{k\in I\setminus L}\varepsilon(k,k\cup J\setminus M)$.

И тогда $\alpha_L \cdot \alpha_M = \zeta \varepsilon(L, I) \varepsilon(M, J) f^{-1}(u_{(I \cup J) \setminus (L \cup M)} v_{L \cup M}) = \zeta \varepsilon(L, I) \varepsilon(M, J) \alpha_{L \cup M} = \zeta \varepsilon(L, I) \varepsilon(M, J) \alpha_L * \alpha_M.$

Что и требовалось показать.

Список литературы

[1] Victor M. Buchstaber, Taras E. Panov. Toric topology.