Публикации и препринты кафедры высшей геометрии и топологии за 2002 г.


В.М.Бухштабер, Д.В.Лейкин.
Алгебры Ли, ассоциированные с сигма-функциями, и версальные деформации.
Русский:  ps
2 стр.
Опубликовано: Успехи Матем. Наук 57 (2002), вып.3, стр.145-146.


В.М.Бухштабер, Э.Рис.
Приложения фробениусовых n-гомоморфизмов.
Русский:  ps
2 стр.
Опубликовано: Успехи Матем. Наук 57 (2002), вып.1, стр.149-150.


И.А.Дынников.
Об одном отображении Янга-Бакстера и упорядочении Деорнуа.
Русский:  ps
2 стр.
Опубликовано: Успехи Матем. Наук 57 (2002), вып.3, стр.151-152.


И.А.Дынников.
Конечно определенные группы и полугруппы в теории узлов.
Русский: ps (gzipped) tex
Английский: ps (gzipped) tex
Опубликовано: Труды МИ РАН им. Стеклова 231 (2001).

Аннотация. In this paper we construct finitely presented semigroups whose central elements are in one-to-one correspondence with isotopy classes of non-oriented links in three-space. Solving the word problem for those semigroups is equivalent to solving the classification problem for links and tangles. Also, we give a construction of finitely presented groups containing the braid group as a subgroup.



Д.В.Миллионщиков.
Филиформные N-градуированные алгебры Ли.
Русский:  ps
Английский:  ps
2 стр.
arXiv.org e-Print archive: http://arXiv.org/abs/math.RA/0205042
Опубликовано: Успехи Матем. Наук 57 (2002), вып.2, стр.197-198.


Д.В.Миллионщиков.
Когомологии с локальными коэффициентами солвмногообразий и задачи теории Морса-Новикова.
Русский:  ps
Английский:  ps
2 стр.
arXiv.org e-Print archive: http://arXiv.org/abs/math.DG/0203067
Опубликовано: Успехи Матем. Наук 57 (2002), вып.4, стр.183-184.


Ivan A. Dynnikov.
A new way to represent links, one-dimensional formalism and untangling technology.
Английский:  ps (gzipped)
41 стр.
Опубликовано: Acta Appl. Math 69 (2002), no.3, 243-283.

Аннотация. An alternative link representation different from planar diagrams is discussed. Isotopy classes of unordered nonoriented links are realized as central elements of a monoid presented explicitly by a finite number of generators and relations. A new partial algorithm for recognizing is constructed. Experiments show that the algorithm allows to untangle unknots whose planar diagram has hundreds of crossings. Here `to untangle' means `to find an isotopy to the circle'



Victor Nistor, Evgenij Troitsky
An index for gauge-invariant operators and the Dixmier-Douady invariant.
Английский:  ps (gzipped)
28 стр.
arXiv.org e-Print archive: http://ru.arXiv.org/abs/math.KT/0201207

Abstract. Let $\GR \to B$ be a bundle of compact Lie groups acting on a fiber bundle $Y \to B$. In this paper we introduce and study gauge-equivariant $K$-theory groups $K_\GR^i(Y)$. These groups satisfy the usual properties of the equivariant $K$-theory groups, but also some new phenomena arise due to the topological non-triviality of the bundle $\GR \to B$. As an application, we define a gauge-equivariant index for a family of elliptic operators $(P_b)_{b \in B}$ invariant with respect to the action of $\GR \to B$, which, in this approach, is an element of $K_\GR^0(B)$. We then give another definition of the gauge-equivariant index as an element of $K_0(C^*(\GR))$, the $K$-theory group of the Banach algebra $C^*(\GR)$. We prove that $K_0(C^*(\GR))\simeq K^0_\GR(\GR)$ and that the two definitions of the gauge-equivariant index are equivalent. The algebra $C^*(\GR)$ is the algebra of continuous sections of a certain field of $C^*$-algebras with non-trivial Dixmier-Douady invariant. The gauge-equivariant $K$-theory groups are thus examples of twisted $K$-theory groups, which have recently proved themselves useful in the study of Ramond-Ramond fields.



Sergey P. Novikov.
On the exotic De-Rham cohomology. Perturbation theory as a spectral sequence.
Английский:  ps (gzipped)
18 стр.
arXiv.org e-Print archive: http://ru.arXiv.org/abs/math-ph/0201019

Abstract. This work is dedicated to some new exotic homological constructions associated with the different Morse-type inequalities for differential forms and vector fields. It contains also survey of ideas developed by the present author in 1986 for this goal.